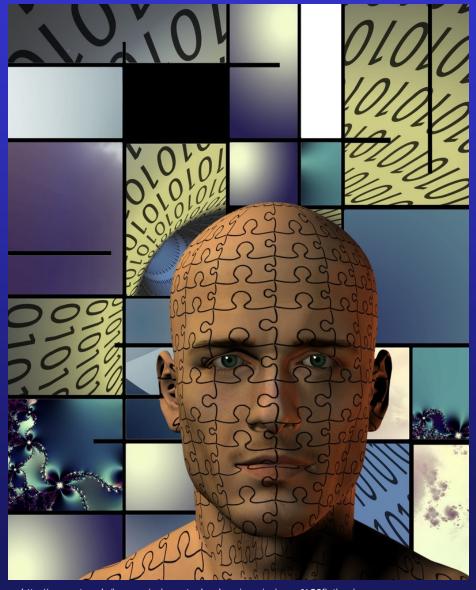
## Critical Thinking: Science, Models, & Systems tutorial by Paul Rich

#### Outline

#### 1. Science & Technology

- What is science?
- What is technology?
- scientific process


#### 2. Systems

- What is a system?
- inputs, throughputs, & outputs
- feedback loops
- behavior of complex systems

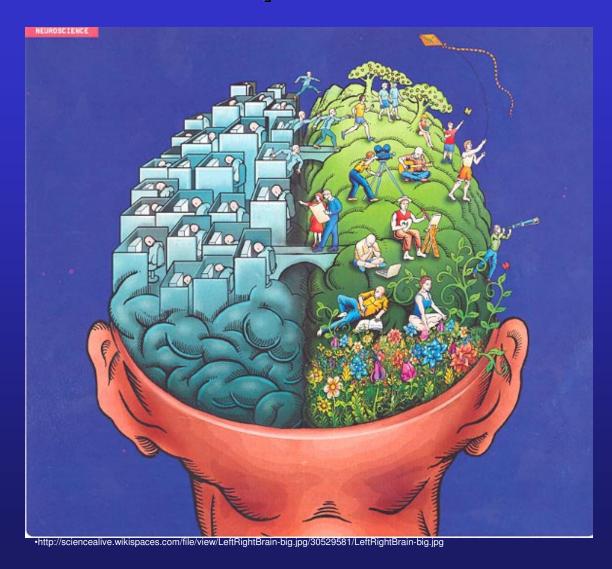
### 1. Science & Technology

Science
pursuit of knowledge
about how the world
works

Technology
creation of new
products & processes
intended to improve
survival, comfort, or
quality of life



•http://www.stu.edu/images/sciencetechnology/new/science%20fiction.jpg


### **Basic Assumptions about Science**



•http://www.mahrouyeh.com/uploads/img0812.jpg

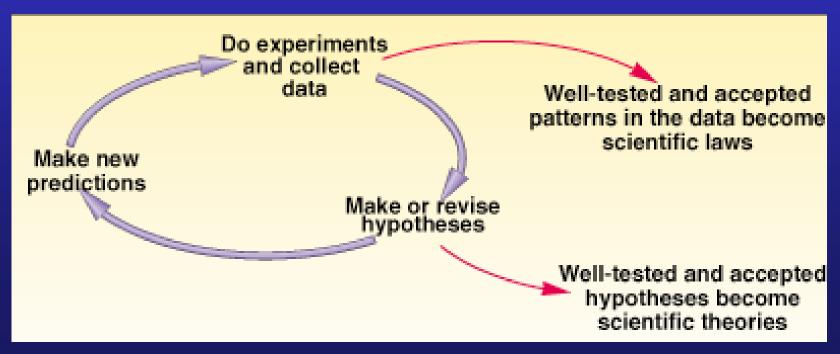
1) There is order in the universe.

#### **Basic Assumptions about Science**



2) The human mind is capable of comprehending this order.

#### **Basic Assumptions about Science**




•http://ssrsbstaff.ednet.ns.ca/jcroft2/images/Sept19%20Deb%203E%20009.jpg

3) If conditions are the same the results will be the same.

#### Scientific Process

- hypotheses proposed to explain observed patterns
- critical tests or experiments conducted
- a hypothesis supported by a great deal of evidence becomes a scientific theory



### Hypotheses & Science

#### **Hypothesis**

a tentative explanation; a testable statement

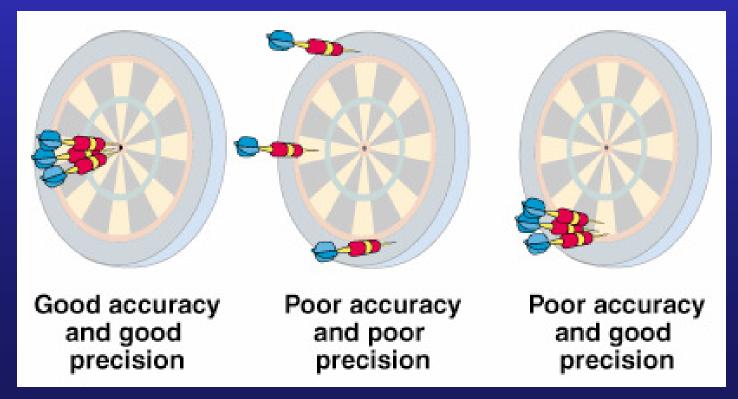
#### some characteristics:

- good hypotheses are falsifiable, can potentially be shown to be incorrect or false
- science proceeds by rejection of hypotheses
- no such thing as final proof

#### Scientific Laws & Theories

#### **Theory**

a conceptual formulation which provides a rational explanation or framework for numerous related observations (ex. global warming due to greenhouse effect)


#### **Scientific Law**

a basic underlying principle that matter, energy, & certain other phenomena apparently always act (or react) in a predictable manner (ex. the law of gravity)

### Accuracy vs. Precision

**Accuracy**: extent to which a measurement agrees with the accepted or correct value

**Precision**: measure of reproducibility



### Types of Reasoning

**Deductive reasoning:** using logic to arrive at a specific conclusion based on a generalization or premise; goes from general to specific.



All birds have feathers.

Eagles are birds.

All eagles have feathers.

### Types of Reasoning

**Inductive reasoning:** using observations and facts to arrive at generalizations or hypotheses; goes from specific to general



•http://newzar.files.wordpress.com/2008/10/co2 emissions main.jpg

CO2 is a heat-trapping gas.

Human activities release CO2 in the atmosphere.

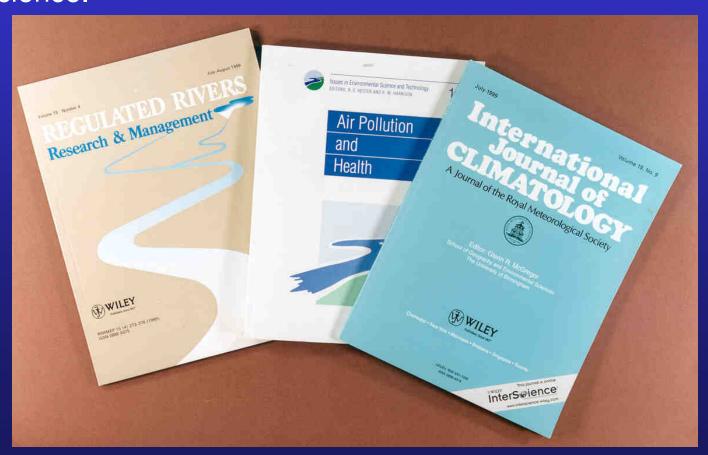
CO2 from human activities is a cause of global climate change.

# Moral of the Story: Use Caution when Reasoning...



•http://3.bp.blogspot.com/\_Tq8oPLja\_2A/TBzcs0\_I\_4l/AAAAAAAAAAAAAAAA(hslf-yOqZ6c/s1600/global-warming2.jpg

#### Frontier Science vs. Consensus Science


Frontier science: preliminary scientific data, hypotheses, and models that have not been widely tested and accepted; very unreliable aspect of science.

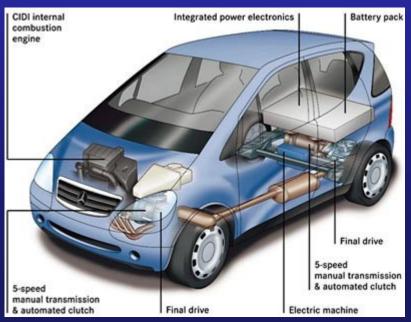


http://www.stbenedictscollege.co.uk/uploads/assets/national newspapers montage.jpg

#### Frontier Science vs. Consensus Science

**Consensus science:** scientific data, models, theories, and laws that are widely accepted; very reliable aspect of science.




### 2. Systems

**System:** a set of components that function & interact in some regular or predictable manner

- structure the organization of system components
- function what the system does

### Examples of Systems

Circulatory System — natural system (components: heart, arteries, veins, capillaries, & blood) that moves blood through body (function: transport of oxygen, carbon dioxide, & nutrients)





http://www.buzzle.com/img/articlelmages/321356-4662-11.jpg

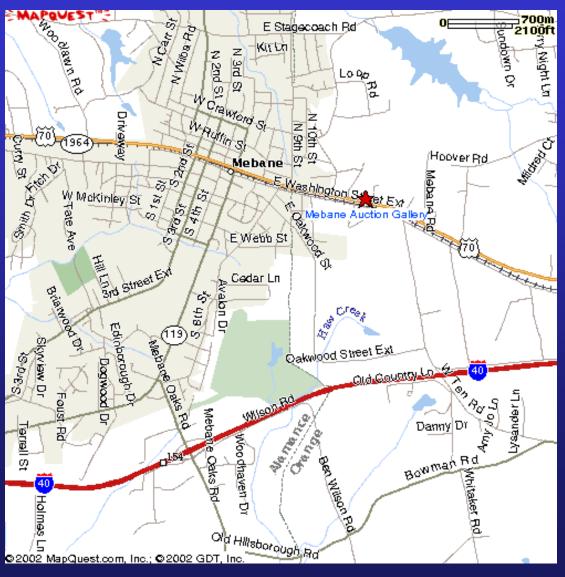
Automobile — human-made system (components: engine, body, brakes, wheels, etc.) that serves to move people & objects (function: transportation)

•http://www.glumac.com/images/newsletter/hybrid\_car.jpg

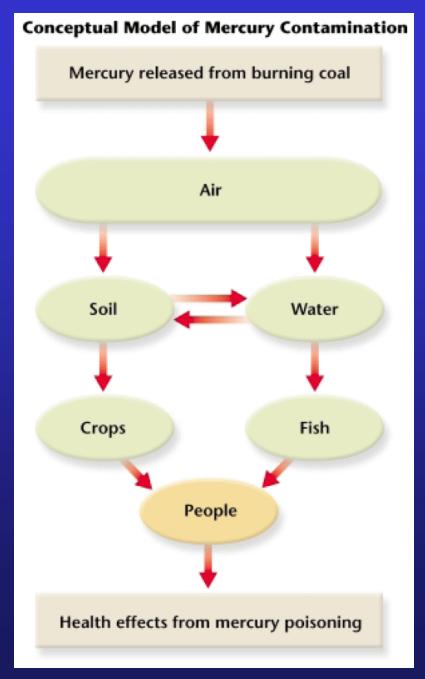
### Using Models to Understand Systems

Models are valuable as approximate representations or simulations of real systems to help find out which ideas or hypotheses work.

**Mental** Models guide our perceptions and help us make predictions




 Physical Models – touchable 3-D models that closely represent an object or system




http://www.cgeglobes.co.uk/images/Atmos%20Blue%20B2%20unlit.jpg

Graphical Models – illustrations which show a representation of an object or system



Conceptual Models –
 verbal or graphical
 explanation of how a
 system works or is
 organized



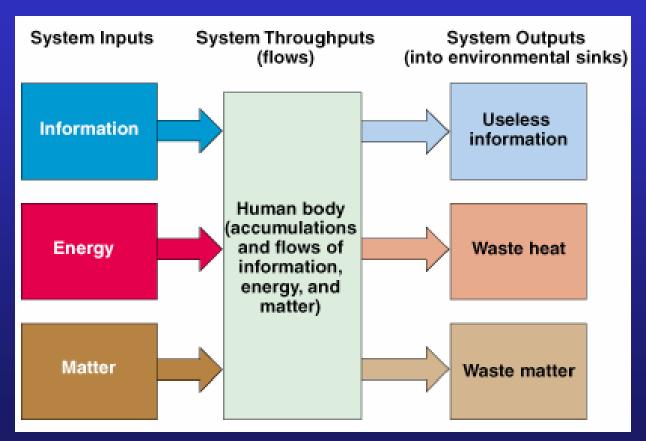
#### Mathematical Models

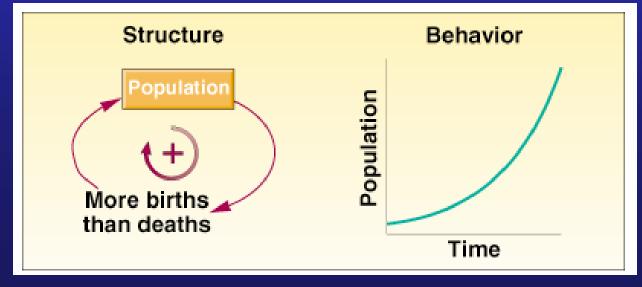
- One or more equations that represent the way a system or process works
- Useful in cases with many variables
- Only as good as the data that went into them



### Inputs, Throughputs, & Outputs

matter, energy, & information flow in (input), through (throughput), & out (output) of a system

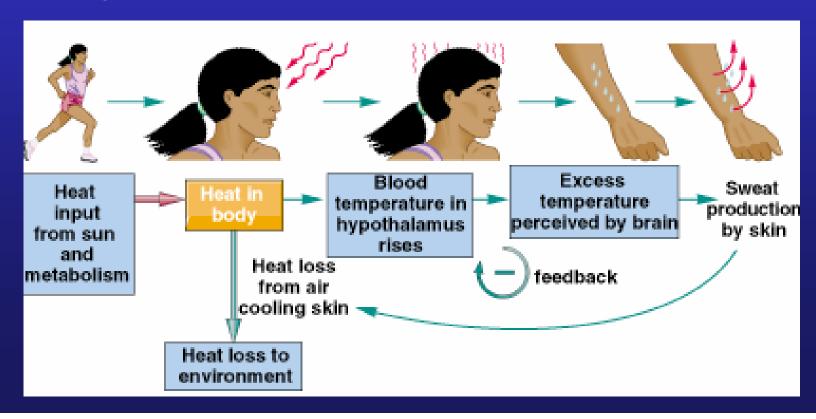




Fig. 2-6

### Feedback Loops

**Feedback Loop:** a relationship in which a change in one part of a system influences another part of the system in a way that either reinforces or slows the original change.

• Positive Feedback Loop: a change in a certain direction within a system causes more change in that same direction; ultimately unstable


Example: exponential population growth involves a positive feedback loop in which more individuals lead to increased numbers of births.



### Feedback Loops

• **Negative Feedback Loop**: a change in a certain direction within a system causes lessening of change in that same direction; ultimately stable.

<u>Example</u>: temperature regulation in humans involves a negative feedback loop in which increased temperature leads to decrease in temperature by sweating; how we maintain **homeostasis** 



#### Some Important Behaviors:

• **Time lags** result when a change in a system leads to other changes after a delay, e.g., lung cancer after 20–30 years of smoking, global warming after decades of carbon dioxide emission.



•http://www.ui-ceo.org/wp-content/uploads/2010/12/smoker-life-insurance-quote.jpg



•http://www.healtynews.com/wp-content/uploads/2010/01/Lung-Cancer.jpg

- Resistance to change is often seen in systems with negative feedbacks that are designed to maintain the system; biological, chemical, and physical components can shift to absorb and cancel much of the change
- •GOOD: Acid precipitation has less of an impact on areas with natural buffers



•http://web4.msue.msu.edu/mnfi/images/communities/3381.jpg

•BAD: many economic & political systems resist environmental initiatives like pollution penalties



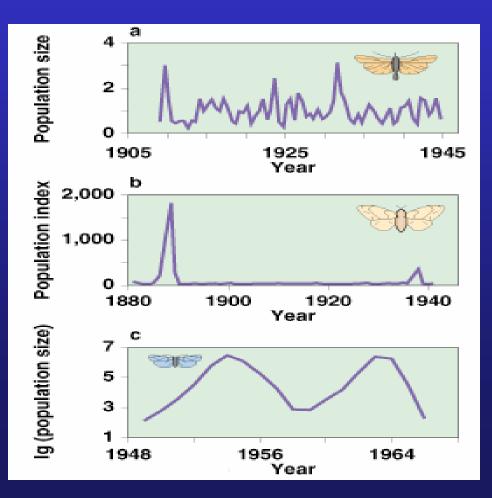
http://itcouldbesweet.files.wordpress.com/2007/10/factory2saved4web2.jpg

• **Synergy** results when two or more processes interact to that the combined effect is more than the sum of their separate effects, e.g., team efforts using multiple talents.

#### Pests and Diseases of Potato



Colorado potato beetle




Late blight

http://ocw.tufts.edu/data/40/434509/434514 xlarge.jpg

• **Chaos** results when noisy or unpredictable behavior is generated from within the system itself, e.g., waves in the ocean, day—to—day variation in weather.

Example: Population dynamics of three moth species display very different patterns. It is not known whether the observed patterns are caused by chaotic behavior or orderly behavior not yet sufficiently understood.



- Chaotic systems can be extremely sensitive to even small disturbances
- Sometimes called the **Butterfly Effect** which alludes to the possibility that a single butterfly flapping its wings can cause minute changes in the movement of air that can eventually initiate a cascade of highly unpredictable changes in the env't



http://www.rsc.org/chemsoc/timeline/graphic/1972 be.jpg

### Designing a Controlled Experiment

- Independent Variable one factor of interest that is being tested
- Dependent Variable what is changing because of the independent variable
- Experimental Group group that receives the experimental treatment/is exposed to the IV
- Control Group group that doesn't receive the experimental treatment/is not exposed to the IV
- Constants all other factors that remain the same between the experimental and control groups

### Designing a Controlled Experiment



•http://www.bio.mq.edu.au/dept/centres/piccel/images/rescaledIsno.jpg

### Salinization: How Much is Too Much?



http://www.geography.hunter.cuny.edu/~tbw/ncc/chapterb.nat.res/irrigation.salinization.hot.climate.jpg