Chapter 18: pp. 317 - 336

BIOLOGY 10th Edition

Sylvia S. Mader

Origin and History of Life

PowerPoint® Lecture Slides are prepared by Dr. Isaac Barjis, Biology Instructor

Origin of Life

- Assignment: Read Evolution (1-71) on the school's website.
- Chemical evolution is the increase in complexity of chemicals that led to the first cells.
 - Today, we say that "life only comes from life."
 - However, the first cells had to arise from an increased complexity of chemicals.

The Primitive Earth

- The Earth came into being about 4.6 BYA (BYA).
- The Earth's mass provides a gravitational field to hold an atmosphere
- Primitive atmosphere:
 - Most likely consisted of:
 - Water vapor
 - Nitrogen
 - Carbon dioxide
 - Small amounts of hydrogen and carbon monoxide
 - Little free oxygen
 - Originally too hot for liquid water to form
 - Earth cooled and water vapor condensed to liquid water

Monomers Evolve

- Comets and meteorites, perhaps carrying organic chemicals, have pelted the Earth throughout history.
 - This may have fossilized bacteria.
- Oparin/Haldane Hypothesis (1920s)
 - Suggested organic molecules could be formed in the presence of outside energy sources using atmospheric gases

Monomers Evolve

- Stanley Miller (1953)
 - Conducted an experiment
 - Showed that gases (methane, ammonia, hydrogen, water) can react with one another to produce small organic molecules (amino acids, organic acids).
 - Strong energy sources
- Led to theory of the Hot Thin Soup

Miller's & Urey's Apparatus & Experiment

Polymers Evolve

- Monomers join to form polymers in the presence of enzymes
 - Protein-First Hypothesis:
 - Assumes protein enzymes arose first
 - DNA genes came afterwards
 - RNA-First Hypothesis:
 - Suggests only RNA was needed to progress toward formation of the first cell or cells
 - DNA genes came afterwards

Chemical Evolution at Hydrothermal Vents

© Ralph White/Corbis

Protocell Evolves

- Before the first true cell arose, there would have been a protocell or protobiont.
- A protocell would have a lipid-protein membrane and carry on energy metabolism.
- Fox showed that if lipids are made available to microspheres, lipids become associated with microspheres producing a lipid-protein membrane.
- Protocells
 - Hypothesized precursors to the first true cells

Protocell Anatomy

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a.

a: © Science VU/Visuals Unlimited; b: Courtesy Dr. David Deamer

Origin of the First Cell(s)

Fossil Dating: Relative

- Remains and traces of past life
- Paleontology is the study of the fossil record
- Most fossils are traces of organisms embedded in sediments
 - Sediment converted to rock
 - Becomes recognizable stratum in stratigraphic sequence of rocks
 - Strata of the same age tend to contain the similar fossil assemblages
 - Helps geologists determine relative dates of embedded fossils despite upheavals

History of Life: Strata

Fossils

(Trilobite): © Francois Gohier/Photo Researchers, Inc.; (Tusks): © AP Photo/Francis Latreille/Nova Productions; (Placoderm): © The Cleveland Museum of Natural History; (Fern): © George Bernard/Natural History Photo Agency; (Petrified wood): Courtesy National Park Service; (Ammonites): © Sinclair Stammers/SPL/Photo Researchers, Inc.; (Scopion): © George O. Poinar; (Dinosaur footprint): © Scott Berner/Visuals Unlimited; (Ichthyosaur): © Natural History Museum, London

The Tree of Life

Fossil Dating: Absolute

- One absolute dating method relies on radio (radioactive) dating techniques
- Half-life:
 - The length of time required for half the atoms to change into something else
 - Unaffected by temperature, light, pressure, etc.
 - All radioactive isotopes have a dependable half life
 - Some only fractions of a second
 - Some billions of years
 - Most in between
- Many isotopes are used, and their combined half lives make them useful over all periods of interest

The Geologic Time Scale: Precambrian Times

- Includes about 87% of the geological timescale
 - Little or no atmospheric oxygen
 - Lack of ozone shield allowed UV radiation to bombard Earth
- First cells came into existence in aquatic environments
 - Prokaryotes
 - Cyanobacteria left many ancient stromatolites fossils
 - Added first oxygen to the atmosphere

Eukaryotic Cells Arise

- Eukaryotic Cells Arise
 - About 1.8 bya
 - Most aerobic
 - Contains nucleus as well as other membranous organelles
 - Endosymbiotic Hypothesis
 - Mitochondria were probably once free-living aerobic prokaryotes.
 - Chloroplasts were probably once free-living photosynthetic prokaryotes.
 - A nucleated cell probably engulfed these prokaryotes that became various organelles.
 - Cilia and flagella may have originated from slender undulating prokaryotes that attached to the host cell.

Prokaryote Fossil of the Precambrian

Eukaryotic Cells Arise

- Multicellularity Arises
 - About 1.4 bya
 - Separating germ cells from somatic cells may have contributed to the diversity of organisms.
 - They lacked internal organs and could have absorbed nutrients from the sea.
 - It's possible that they practiced sexual reproduction

Cenozoic and Mesozoin Eras

The Geolo	ogic Timescale: N	Major Division	s of Geologic Tir	ne and Some of the Major Evolu	tionary Events of Each Time Period
Era	Period	Epoch	Millions of Years Ago (MYA)	Plant Life	Animal Life
		Holocene	(0.01-0)	Human influence on plant life	Age of Homo sapiens
		Significant Mammalian Extinction			
	Quaternary	Pleistocene	(1.80-0.01)	Herbaceous plants spread and diversify.	Presence of Ice Age mammals. Modern humans appear.
		Pliocene	(5.33–1.80)	Herbaceous angios perms flourish.	First hominids appear.
		Miocene	(23.03-5.33)	Grasslands spread as forests contract.	Apelike mammals and grazing mammals flourish; insects flourish.
Cenozoic*		Oligocene	(33.9–23.03)	Many modern families of flowering plants evolve.	Browsing mammals and monkeylike primates appear.
	Tertiary	Eocene	(55.8–33.9)	Subtropical forests with heavy rainfall thrive.	All modern orders of mammals are represented.
		Paleocene	(65.5–55.8)	Flowering plants continue to diversify.	Primitive primates, herbivores, carnivores, and insectivores appear.
		Mass Extinction: Dinosaurs and Most Reptiles			
	Cretaceous		(145.5-65.5)	Flowering plants spread; conifers persist.	Placental mammals appear; modern insect groups appear.
Mesozoic	Jurassic		(199.6–145.5)	Flowering plants appear.	Dinosaurs flourish; birds appear.
				Mass Extinction	anni -)
	Triassic		(251–199.6)	Forests of conifers and cycads dominate.	First mammals appear; first dinosaurs appear; corals and molluscs dominate seas.

Paleozoic and Precambrian Time Eras

TABLE 18.1

The Geologic Timescale: Major Divisions of Geologic Time and Some of the Major Evolutionary Events of Each Time Period

				" /
			Mass Extinction	
	Permian	(299–251)	Gymnosperms diversify.	Reptiles diversify; amphibians decline.
	Carboniferous	(359.2–299)	Age of great coal-forming forests; ferns, club mosses, and horsetails flourish.	Amphibians diversify; first reptiles appear; first great radiation of insects.
			Mass Extinction	170
Paleozoic	Devonian	(416–359.2)	First seed plants appear. Seedless vascular plants diversify.	First insects and first amphibians appear on land.
	Silurian	(443.7–416)	Seedless vascular plants appear.	Jawed fishes diversify and dominate the seas.
			Mass Extinction	
	Ordovician	(488.3-443.7)	Nonvascular land plants appear on land.	First jawless and then jawed fishes appear.
	Cambrian	(542–488.3)	Marine algae flourish.	All invertebrate phyla present; first chordates appear.
		630	Soft-bodied invertebrates	
Precambrian Time		1,000	Protists diversify.	(ווטישול)
		2,100	First eukaryotic cells	11/1/1/1
		2,700	O ₂ accumulates in atmosphere.	100
		3,500	First prokaryotic cells	
		4,570	Earth forms.	0 0

Ediacaran Fossils

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

а

a: Courtesy J. William Schopf; b: © Francois Gohier/Photo Researchers, Inc.

The Paleozoic Era

- Begins with Cambrian Period
- Thus all time previous is Pre-Cambrian
- Lasted over 300 million years
- Includes three major mass extinction events
 - Disappearance of a large number of taxa
 - Occurred within a relatively short time interval (compared to geological time scale)

Sea Life of the Cambrian Period

(Opabina): © A. J. Copley/Visuals Unlimited; (Thaumaptilon): © Simon Conway Morris, University of Cambridge; (Wiwaxia): © Albert Copley/Visuals Unlimited; (Vauxia): © Alan Siruinikoff/Photo Researchers, Inc.

The Cambrian Period

- High diversity of the Cambrian may be due to the evolution of outer skeletons
- Molecular Clock:
 - Based on hypothesis that
 - Changes in base-pair sequences of certain DNA segments occur at fixed rate, and
 - The rate is not affected by natural selection or other external factors
 - When these base-pair sequences are compared between two species:
 - Count the number of base-pair differences
 - Count tells how long two species have been evolving separately

The Invasion of Land

- Plants
 - Seedless vascular plants date back to Silurian period
 - Later flourished in Carboniferous period
- Invertebrates
 - Arthropods were first animals on land
 - Outer skeleton and jointed appendages preadapted them to live on land
- Vertebrates
 - Fishes first appeared in Ordovician

Swamp Forests of the Carboniferous Period

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a: @The Field Museum, #CSGEO75400c; b: @ John Cancalosi/Peter Arnold, Inc.; c: @ John Gerlach/Animals Animals/Earth Scenes;

The Mesozoic Era

- Triassic Period
 - Nonflowering seed plants became dominant
- Jurassic Period
 - Dinosaurs achieved enormous size
 - Mammals remained small and insignificant
- Cretaceous Period
 - Dinosaurs began precipitous decline
 - Mammals:
 - Began an adaptive radiation
 - Moved into habitats left vacated by dinosaurs

Dinosaurs of the Late Cretaceous Period

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Cenozoic Era

Mammals continued adaptive radiation

 Flowering plants already diverse and plentiful

Primate evolution began

Mammals of the Oligocene Epoch

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Chase Studio/Photo Researchers, Inc.

Woolly Mammoth of the Pleistocene Epoch

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Gianni Dagli Orti/Corbis

Factors That Influence Evolution

- Plate Tectonics
 - Positions of continents and oceans are not fixed
 - Earth's crust consists of slab-like plates
 - Tectonic plates float on a lower hot mantle layer
 - Movements of plates result in continental drift
- Modern mammalian diversity results from isolated evolution on separate continents

Continental Drift

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mass Extinctions

- Occurred at the end of the following periods:
- Ordovician
 - 438 mya
 - 75% of species disappeared
- Devonian
 - 360 mya
 - 70% of marine invertebrates disappeared

- Permian
 - 245 mya
 - 90% of ocean species disappeared
- Triassic
 - 208 mya
 - 60% of species disappeared
- Cretaceous
 - 66 mya
 - 75% of species disappeared

Mass Extinctions

