	Sevier	logy High School s – Chapter 10	113	Name _ Date Per			
1.	sedime	ent. Nearly ever	is the most impry landscape on Eart	ortant geologic a	agent in eroding ults of stream e	g, transporting and c rosion or deposition	lepositing
2.	Define	the following co	omponents of the Hy	drologic Cycle.			
	a.	Evaporation					
	b.	Precipitation					
	C.	Transpiration					
	d.	Runoff					
	e.	Condensation					
	f.	Infiltration					
	ground	lwater, plants,	ver the following wanimals, rain and litration (30 pts).				

4. A _____ is a body of running water, confined to a channel, that runs downhill under the influence of gravity.

5. Defi	ne the following	components of a strea	am.		
ć	a. Headwaters				
ł	o. Mouth				
(c. Channel				
(d. Stream bank	KS			
(e. Streambed				
f	f. Floodplain				
6. A_		is	the total area drained by a st	ream and its tributaries.	
7. A_		is a small strear	m flowing into a larger one.		
8. The that	The Divide separates the streams that flow into the Pacific from those that flow into the Atlantic and Gulf of Mexico.				
	ne the following n type (8pts).	stream drainage patte	erns and give an example of	where you would expect to find	
7		Туре:	Example:		
		Туре:	Example:		
		Туре:	Example:		
XXXXXX		Туре:	Example:		
10. Stre	am erosion (and	d deposition) is controll	ed by flow	_ and	
	am velocity is co	ontrolled by stream	(slope), char	nnel, and	

12	(Higne	er/Lower) stream v	elocities promote erosion and transport of courser sediments.
13	Strean	n le. It usually decre	is the downhill slope of the streambed and is typically measured in feet eases downstream.
14			and deeper channels allow for faster flow.
15			_ channels allow for faster flow.
16	·		and shallower channels decrease flow speed.
17			_ channels decrease flow speed.
18		•	volume of water flowing past a given point in a unit of time and is measured in s). The equation is:
	Discha	arge (cfs) = Averag	e stream width (ft) x Average stream depth (ft) x Average stream velocity (ft/sec)
		is the discharge of d (show your work	a stream that is 100 feet wide, 15 feet deep, and has a velocity of 6 feet per) (5pts)?
19	Define	the following com	ponents of stream erosion and sediment transportation:
	a.	Hydraulic action	
	b.	Solution	
	C.	Abrasion	
	d.	Bed load	
	e.	Suspended load	
	f.	Dissolved load	
20	A stream	n channel.	is a broad strip of land built up by sedimentation on either side of a
21	A decrea		is a body of sediment deposited at the mouth of a river when flow velocity
22	An stream arid re	n velocity decrease	is a large, fan- or cone-shaped pile of sediment that forms where as as it emerges from a narrow mountain canyon onto a flat plain, typically in
23	recurre	ence intervals of m	ed on various rivers throughout the U.S. can be used to calculate the najor flood events. The Sevier River has discharge data that has been ne following equation is used to calculate the recurrence interval:
		Recurren	ce interval (R) = $\frac{n+1}{m}$

 \boldsymbol{n} is the number of years of record (which is 96 years for the Sevier River) \boldsymbol{m} is the magnitude rank.

Water Year	Peak Discharge (cfs)	Magnitude Rank (m)	Recurrence Interval
1983	2,500	1	
1941	2,270	2	
1973	1,660	3	
1995	1,650	4	
1914	1,570	5	
1985	1,300	6	
1952	1,240	7	
1984	1,230	8	
1949	1,210	9	
1979	1,200	10	
1942	1,160	11	
1916	1,120	12	
1993	1,030	13	
1980	1,000	14	_

Using the table above, calculate the recurrence interval for each year of record discharges.

- 24. If the largest peak discharge on record occurred in 1983, when can we expect another peak discharge of this magnitude (year)?
- 25. Name two causes of urban flooding (2pts).
- 26. Several rivers have been set aside as "wild rivers" on which dams cannot be built. Give two arguments

Ο.	against building dams on rivers, and two arguments for building dams on rivers (4pts).
	Against:
	Against:
	For:
	For:
7.	What affect would global warming have on the overall water budget in the Hydrologic Cycle (5pts)?

28. Discuss the similarities and differences between deltas and alluvial fans (5pts).