Chapter 7

7.1 Photosynthetic Organisms

- 1. Photosynthetic organisms (algae, plants, and cyanobacteria) transform solar energy into carbohydrates.
- 2. Photosynthetic organisms (plants, algae, cyanobacteria) are called **autotrophs** because they produce their own food.
- 3. Organisms that must take in preformed organic molecules are called **heterotrophs**.
- 4. Both autotrophs and heterotrophs use organic molecules produced by photosynthesis as chemical building blocks and as a source of energy.
- A. Flowering Plants as Photosynthesizers
 - 1. Raw materials for photosynthesis are carbon dioxide and water.
 - 2. Roots absorb water that moves up vascular tissue in the stem until it reaches the leaf veins.
 - 3. Carbon dioxide enters a leaf through small openings called **stomata**.
 - 4. Carbon dioxide and water diffuse into the **chloroplast**s, the organelles that carry on photosynthesis.
 - 5. In chloroplasts, a double membrane encloses a fluid-filled space called the **stroma**.
 - 6. An internal membrane system within the stroma forms flattened sacs called **thylakoids**, which in some cases are organized into stacks to form **grana**.
 - 7. Spaces within all thylakoids are connected to form an inner compartment, the *thylakoid space*.
 - 8. **Chlorophyll** and other pigments involved in absorption of solar energy reside within thylakoid membranes; these pigments absorb solar energy, and energize electrons prior to reduction of CO₂ to a carbohydrate.

7.2 The Process of Photosynthesis

- 1. The net equation of photosynthesis reads: $6CO_2 + 6H_2O = C_6 H_{12}O_6 + 6O_2$.
- 2. Photosynthesis involves oxidation-reduction, where the carbon dioxide has been reduced by hydrogen atoms and energy, and the water has been oxidized.
 - a. Solar energy is not used directly, but rather converted to ATP molecules.
 - b. Electrons required to reduce carbon dioxide is carried by coenzyme, $NADP^+$.
- 3. In 1930, van Niel showed that O₂ given off by photosynthesis comes from water and not from CO₂.
- A. Two Sets of Reactions
 - 1. In 1905, Blackman proposed two sets of reactions for photosynthesis.
 - 2. Light reactions take place only in the presence of light.
 - a. Light reactions are the energy-capturing reactions.
 - b. Chlorophyl within thylakoid membranes absorbs solar energy and energizes electrons.
 - c. When energized electrons move down an electron transport chain, energy is captured and used for ATP production.
 - d. Energized electrons are also taken up by NADP⁺, converting it to NADPH.
 - 3. Calvin cycle reactions

- a. These reactions take place in the stroma; the reactions can occur in either the presence or the absence of light.
- b. These are synthetic reactions that use NADPH and ATP to reduce CO₂.

7.3 Plants as Solar Energy Converters

- 1. Higher energy wavelengths are screened out by the ozone layer in the upper atmosphere.
- 2. Lower energy wavelengths are screened out by water vapor and CO₂.
- 3. Both the organic molecules within organisms and certain processes (e.g., vision, photosynthesis) are adapted to visible light, the radiation that is most prevalent in the environment.
- 4. Photosynthetic pigments use primarily the **visible light** portion of the electromagnetic spectrum.
- 5. Pigments found in chlorophyll absorb various portions of visible light; this is called their **absorption spectrum**.
- 6. Two major photosynthetic pigments are chlorophyll *a* and chlorophyll *b*.
- 7. Both chlorophylls absorb violet, blue, and red wavelengths best.
- 8. Very little green light is absorbed; most is reflected (this is why leaves appear green).
- 9. **Carotenoids** are yellow-orange pigments that absorb light in violet, blue, and green regions.
- 10. When chlorophyll breaks down in the fall, the yellow-orange pigments in leaves show through.
- 11. Absorption and action spectrum
 - a. A *spectrophotometer* measures the amount of light that passes through a sample.
 - 1) As light is shone on a sample, some wavelengths are absorbed and others pass through the sample.
 - 2) A graph of percent of light absorbed at each wavelength is a compound's **absorption spectrum.**
- A. Light Reactions
 - 1. This light reaction requires participation of two light-gathering units: photosystem I (PS I) and photosystem II (PS II).
 - 2. A **photosystem** is a photosynthetic unit comprised of a pigment complex and an electron acceptor; solar energy is absorbed and high-energy electrons are generated.
- B. Noncyclic Electron Pathway
 - 1. The noncyclic pathway begins with PSII; electrons move from H_2O through PS II to PS I and then on to NADP⁺.
 - 2. The PS II pigment complex absorbs solar energy; high-energy electrons (e⁻) leave the reaction-center chlorophyll *a* molecule.
 - 3. PS II takes replacement electrons from H_2O , which splits, releasing O_2 and H^+ ions:

 $H_2O = \Box 2 H^+ + 2 e^- + \frac{1}{2}O_2.$

4. Oxygen is released as oxygen gas (O₂).

- 5. The H⁺ ions temporarily stay within the thylakoid space and contribute to a H⁺ ion gradient.
- 6. As H^+ flow down electrochemical gradient through ATP synthase complexes, chemiosmosis occurs.
- 7. Low-energy electrons leaving the electron transport system enter PS I.
- 8. When the PS I pigment complex absorbs solar energy, high-energy electrons leave reaction-center chlorophyll *a* and are captured by an electron acceptor.
- 9. The electron acceptor passes them on to $NADP^+$.
- 10. NADP⁺ takes on an H⁺ to become NADPH: NADP⁺ + 2 e⁻ + H⁺ = NADPH.
- 11. NADPH and ATP (produced by noncyclic-flow electrons in the thylakoid membrane) are used by enzymes in the stroma during the light-independent (dark) reactions.
- C. The Organization of the Thylakoid Membrane
 - 1. PS II consists of a *pigment complex* and *electron-acceptor molecules*; it oxidizes H₂O and produces O₂.
 - 2. The electron transport system consists of *cytochrome complexes* and transports electrons and pumps H^+ ions into the thylakoid space.
 - 3. PS I has a pigment complex and electron-acceptor molecules; it is associated with an enzyme that reduces NADP⁺ to NADPH.
 - 4. *ATP synthase complex* has an H^+ channel and ATP synthase; it produces ATP.
- D. ATP Production
 - 1. The thylakoid space acts as a reservoir for $H^{\scriptscriptstyle +}$ ions; each time H_2O is split, two $H^{\scriptscriptstyle +}$ remain.
 - 2. Electrons move carrier-to-carrier, giving up energy used to pump H⁺ from the stroma into the thylakoid space.
 - 3. Flow of H⁺ from high to low concentration across thylakoid membrane provides energy to produce ATP from ADP + P by using an ATP synthase enzyme.
 - 4. This is called **chemiosmosis** because ATP production is tied to an electrochemical (H⁺) gradient.
 - E. Tropical Rain Forest Destruction and Global Warming (Ecology Focus Box)
 - 1. **Global warming** is an unexpected rise in the average global temperature during the 21st century due to the introduction of certain gases into the atmosphere.
 - 2. For more than 1000 years before 1850, carbon dioxide levels remained fairly constant at 0.028%.
 - 3. Following the 1850s (marked by the industrial revolution), the amount of carbon dioxide in the atmosphere increased to 0.038%.
 - 4. Role of Carbon Dioxide
 - a. Carbon dioxide, as well as other gases, traps radiant heat from the sun.
 - b. Factors adding carbon dioxide to the atmosphere include: burning of fossil fuels, and destructing tropical rain forests.
 - 5. Role of Tropical Rain Forests

a. Ten -30 million hectares of rain forests are lost every year due to ranching, logging, and mining.

- b. Each year, tropical rain forest deforestation accounts for 20-30% of all carbon dioxide in the atmosphere.
- c. Destruction of tropical rain forests is also troublesome because burning a forest add carbon dioxide to the atmosphere, and also removes trees that normally would absorb carbon dioxide.
- 6. The Argument for Preserving Forests
 - a. Tropical rain forests contribute to the uptake of carbon dioxide, and the productivity of photosynthesis.
 - b. Tropical rain forests exist between the Tropic of Cancer and Tropic of Capricorn, temperatures about 26 C, and where rainfall is 100-200 cm and regular.
 - c. Tropical rain forest tree characteristics include: large trees, buttressed trunks, broad, simple dark-green leaves, and vines (lianas).
 - d. Researchers suggest that as temperatures rise, tropical rain forests may add to atmospheric carbon dioxide accumulation and accelerate global warming rather than the reverse.
 - e. To combat deforestation, some countries, such as Costa Rica, have developed national park systems and reserves to protect the forests from destruction.

7.4 Calvin Cycle Reactions

- 1. The Calvin cycle is a series of reactions producing carbohydrates; these reactions follow the light reactions.
- 2. The cycle is named for Melvin Calvin who used a radioactive isotope of carbon to trace the reactions.
- 3. The Calvin cycle includes carbon dioxide fixation, carbon dioxide reduction, and regeneration of ribulose 1,5-bisphosphate (RuBP).
- A. Fixation of Carbon Dioxide
 - 1. CO₂ fixation is the attachment of CO₂ to an organic compound called RuBP.
 - 2. **RuBP (ribulose bisphosphate)** is a five-carbon molecule that combines with carbon dioxide; the resulting 6-carbon molecule then splits into two 3-carbon molecules.
 - 3. The enzyme **RuBP carboxylase (rubisco)** speeds this reaction; this enzyme comprises 20–50% of the protein content of chloroplasts--it is an unusually slow enzyme.
- B. Reduction of Carbon Dioxide
 - 1. With the reduction of carbon dioxide, a 3PG (3-phosphoglycerate) molecule forms.
 - 2. Each of two 3PG molecules undergoes reduction to G3P (glyceraldehyde-3-phosphate) in two steps.
 - 3. Light-dependent reactions provide NADPH (electrons) and ATP (energy) to reduce 3PG to G3P.
- C. Regeneration of RuBP
 - 1. For every three turns of the Calvin cycle, five molecules of G3P are used to re-form three molecules of RuBP.
 - 2. This reaction also uses ATP produced by the light reactions.
- D. The Importance of the Calvin Cycle

- 1. G3P, the product of the Calvin Cycle can be converted into many other molecules.
- 2. Glucose phosphate is one result of G3P metabolism; it is a common energy molecule.
- 3. Glucose phosphate can bond with *fructose* to form *sucrose*.
- 4. Glucose phosphate is the starting point for synthesis of *starch* and *cellulose*.
- 5. The hydrocarbon skeleton of G3P is used to form fatty acids and glycerol; the addition of nitrogen forms various amino acids.

7.5 Other Types of Photosynthesis

- 1. In C₃ plants, the Calvin cycle fixes CO₂ directly; the first molecule following CO₂ fixation is 3PG.
- 2. In hot weather, stomata close to save water; CO_2 concentration decreases in leaves; O_2 increases.
- 3. This is called **photorespiration** since oxygen is taken up and CO₂ is produced; this produces only one 3PG.

A. C₄ Photosynthesis

- 1. In a C₃ plant, mesophyll cells contain well-formed chloroplasts, arranged in parallel layers.
- 2. In C₄ plants, bundle sheath cells as well as the mesophyll cells contain chloroplasts.
- 3. In C_4 leaf, mesophyll cells are arranged concentrically around the bundle sheath cells.
- 4. C₃ plants use RuBP carboxylase to fix CO₂ to RuBP in mesophyll; the first detected molecule is G3P.
- 5. C₄ plants use the enzyme PEP carboxylase (PEPCase) to fix CO₂ to PEP (phosphoenolpyruvate, a C3 molecule); the end product is oxaloacetate (a C₄ molecule).
- 6. In C₄ plants, CO₂ is taken up in mesophyll cells and malate, a reduced form of oxaloacetate, is pumped into the bundle-sheath cells; here CO₂ enters Calvin cycle.
- 7. In hot, dry climates, net photosynthetic rate of C₄ plants (e.g., corn) is 2–3 times that of C₄ plants.
- 8. Photorespiration does not occur in C₄ leaves because PEPCase does not combine with O₂; even when stomates are closed, CO₂ is delivered to the Calvin cycle in bundle sheath cells.
- 9. C₄ plants have advantage over C₃ plants in hot and dry weather because photorespiration does not occur; e.g., bluegrass (C₃) dominates lawns in early summer, whereas crabgrass (C₄) takes over in the hot midsummer.

B. CAM Photosynthesis

- 1. **CAM (crassulacean-acid metabolism)** plants form a C₄ molecule at night when stomates can open without loss of water; found in many succulent desert plants including the family *Crassulaceae*.
- 2. At night, CAM plants use PEPCase to fix CO₂ by forming C₄ molecule stored in large vacuoles in mesophyll.

- 3. C₄ formed at night is broken down to CO₂ during the day and enters the Calvin cycle within the same cell, which now has NADPH and ATP available to it from the light-dependent reactions.
- 4. CAM plants open stomates only at night, allowing CO₂ to enter photosynthesizing tissues; during the day, stomates are closed to conserve water but CO₂ cannot enter photosynthesizing tissues.
- 5. Photosynthesis in a CAM plant is minimal, due to limited amount of CO₂ fixed at night; but this does allow CAM plants to live under stressful conditions.
- C. Photosynthesis and Adaptation to the Environment
 - 1. Each method of photosynthesis has its advantages, depending on the environment.
 - 2. C₄ plants are adapted to areas of high light intensities, high temperatures, and limited rainfall.
 - 3. C₃ plants do better in cooler climates.
 - 4. CAM plants do well in an arid environment.