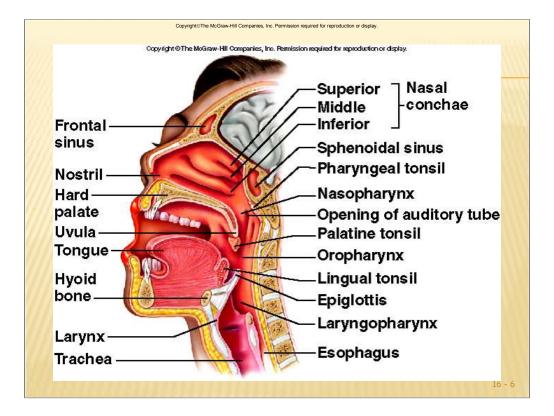


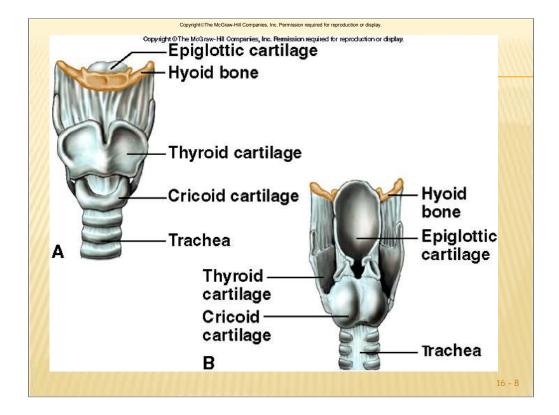
HUMAN RESPIRATION

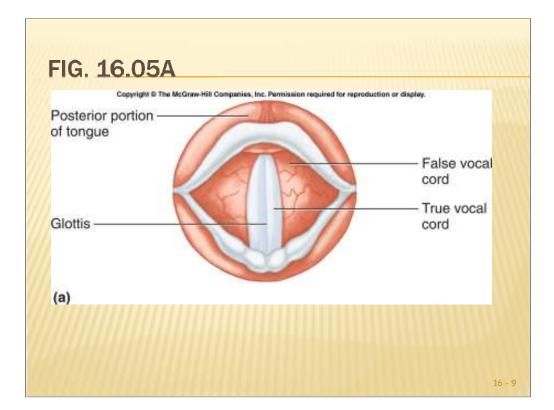
- Works together with the circulatory system
- Exchange of gases between atmosphere, blood, and cells
- If respiratory system and/or circulatory system fails, death will occur
- Cells need O₂ for work; release CO₂ as a waster product
- Accumulation of excess CO₂ is toxic to cells and MUST be removed

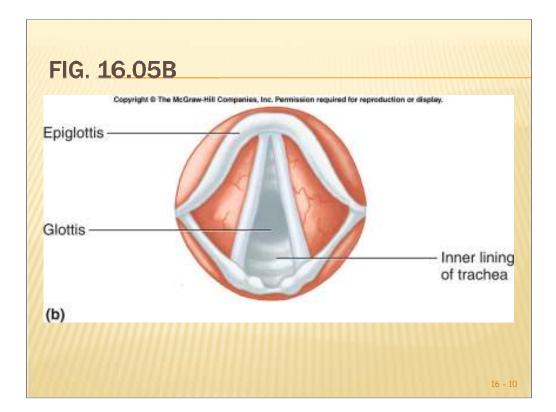
HUMAN RESPIRATION

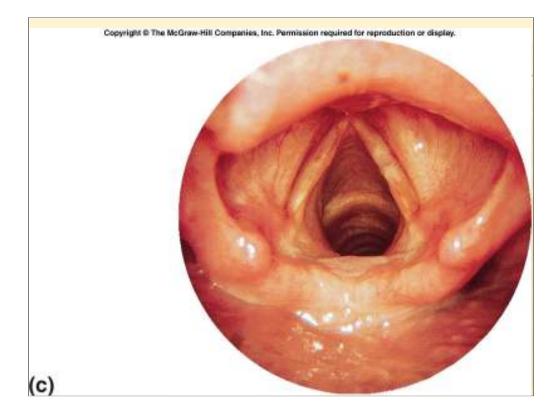

Respiratory System

- × Intakes oxygen
- Releases carbon dioxide waste

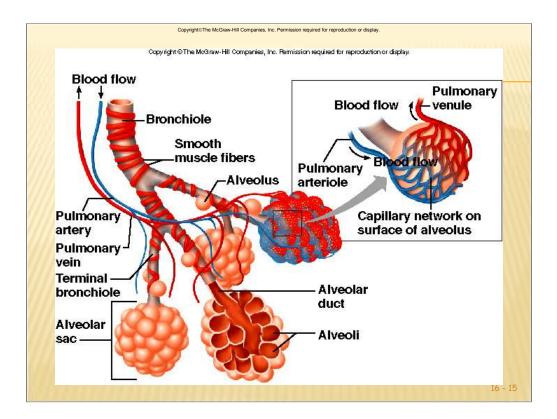

Circulatory system


Transports gases
 in blood between
 lungs and cells


- Nose made of cartilage and bone and is designed to warm, moisten, and filter air as it comes into the system
- <u>Pharynx</u> (throat) conducts food and air; exchanges air with Eustachian tube to equalize pressure



- Larynx (voice box) connects the pharynx and the trachea; made of cartilage; contains vocal cords
- Epiglottis flap of tissue that covers trachea; ensures food travels down the esophagus


- <u>Trachea</u> (windpipe) tubular passage way for air; carries air to the lungs, C-shaped cartilage rings, divides at end
- <u>Bronchi</u> pair of tubes that branch from trachea and enter lungs; have cartilage plates; lining is ciliated & secretes mucus

 RESPIRATORY STRUCTURES AND ORGANS
 Bronchioles – tiny tubes lacking cartilage and cilia; possess smooth muscle

- Autonomic nervous system regulates diameter of bronchioles
- Sympathetic division dilates bronchioles

 Parasympathetic division constricts bronchioles

Alveoli – cup shaped structures at the end of the bronchioles that resemble bunches of grapes; are in direct contact with capillaries (gas exchange); covered with SURFACTANT that keep them from collapsing.

Branches of the Bronchial Tree

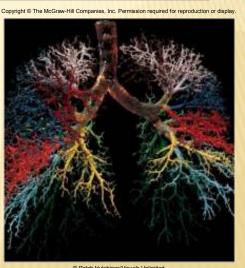
• The successive divisions of the branches from the trachea to the alveoli are:

1.Right and left primary bronchi

2.Secondary or lobar bronchi

3. Tertiary or segmental bronchi

4.Intralobular bronchioles (12-14 generations)

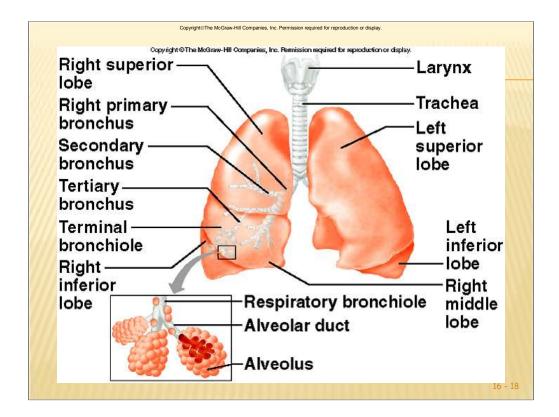

5. Terminal bronchioles

6.Respiratory bronchioles

7. Alveolar ducts

8. Alveolar sacs

9.Alveoli

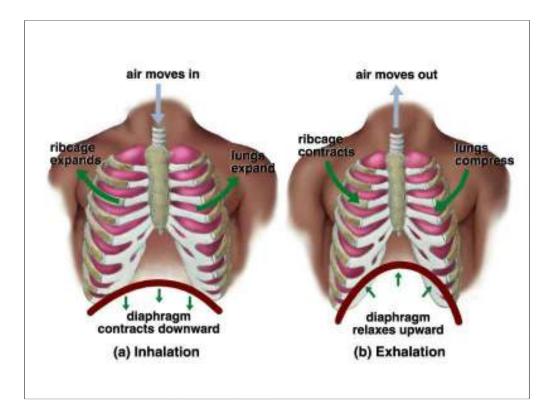


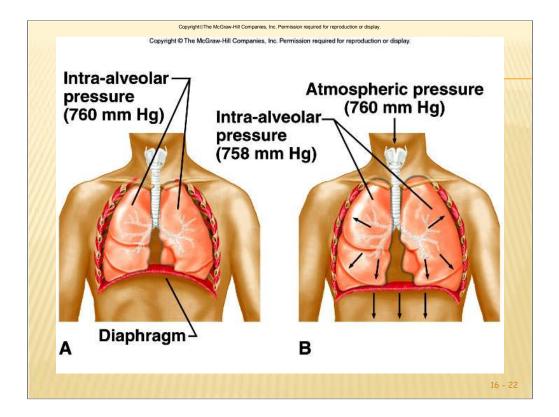
© Ralph Hutchings/Visuals Unlimited

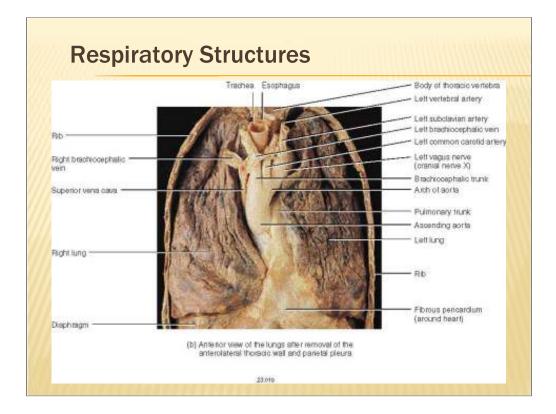
16

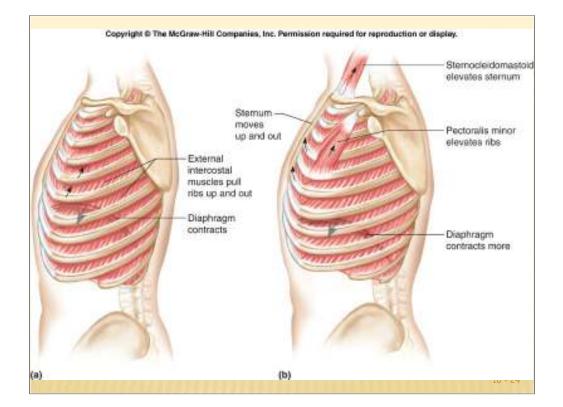
THE LUNGS

Lungs – paired, cone-shaped organs that are surrounded by a pleural membrane, made of elastic tissue, and divided into lobes

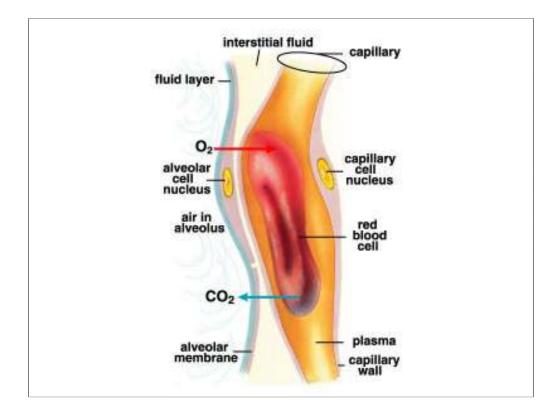


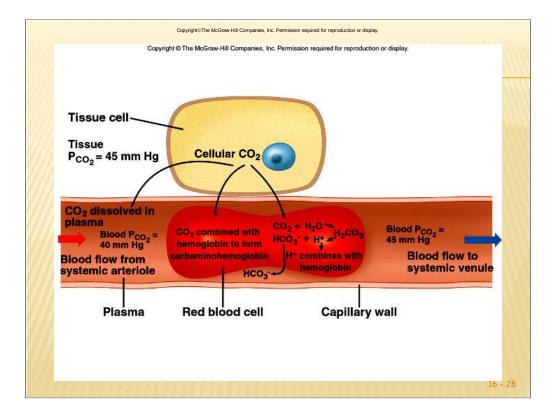

MECHANICS OF BREATHING


- Inhaling (active process) Air moves in. Why??
 - + Gases move from an area of high pressure to low pressure
 - During inspiration diaphragm pulls down and lungs expand
 - + When lungs expand, it INCREASES the VOLUME, which DECREASES the PRESSURE inside lungs
 - + Lung pressure is lower than outside pressure, so air moves in


MECHANICS OF BREATHING

- Exhaling (passive process) breathing out
 - +Diaphragm and muscles relax
 - +Volume in lungs and chest cavity decreases, so now pressure inside increases
 - +Air moves out because pressure inside is HIGHER than OUTSIDE atmosphere


RESPIRATION


× What is respiration?

- +External respiration exchange of O₂ and CO₂ between respiratory surfaces and the blood (breathing)
- Internal respiration exchange of O₂ and CO₂ between the blood and cells
- +Cellular respiration process by which cells use O₂ to produce ATP

EXTERNAL RESPIRATION

- Exchange of O₂ and CO₂ between alveoli and blood
- Partial pressure of O₂ higher in alveoli than blood so O₂ diffuses into blood
- Partial pressure of CO₂ higher in blood than alveoli, so CO₂ moves into alveoli in opposite direction and gets exhaled out

INTERNAL RESPIRATION

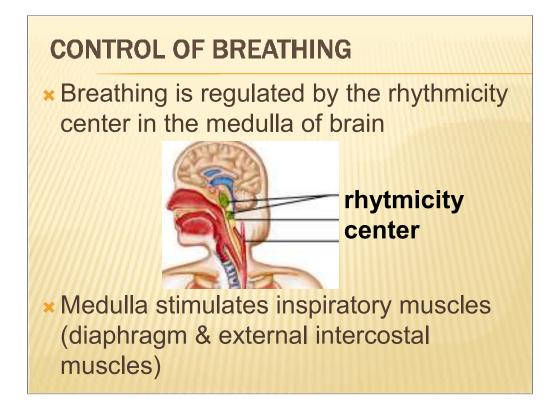
- Exchange of O₂ and CO₂ between blood and tissues
- Pressure of O₂ higher in blood than tissues so O₂ gets release into tissues.
- × Pressure of CO_2 higher in tissue than in blood so CO_2 diffused in opposite direction into blood.
- × CO₂ Is a waste product
- × O₂ Is used in cellular respiration

GAS EXCHANGE					
★ Earth's atmosphere is about 78% Nitrogen and about 21% O ₂					
× What happens to the air when we inhale?					
	GAS	INHALED	EXHALED		
	O ₂	20.71%	14.6%		
	CO ₂	.004%	4.0%		
	H ₂ O	1.25%	5.9%		
× 300 million alveoli in a healthy lung					
× Hemoglobin can hold four O_2 molecules					

GAS TRANSPORT IN BLOOD

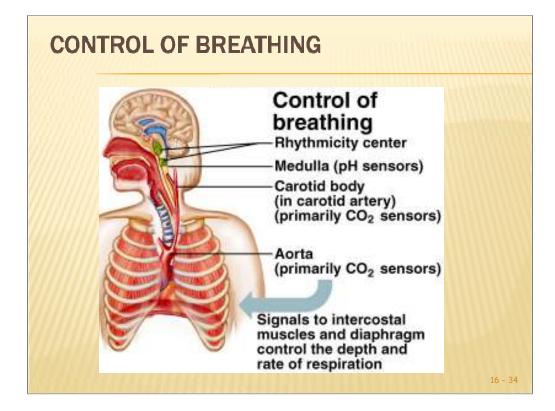
× Carbon dioxide

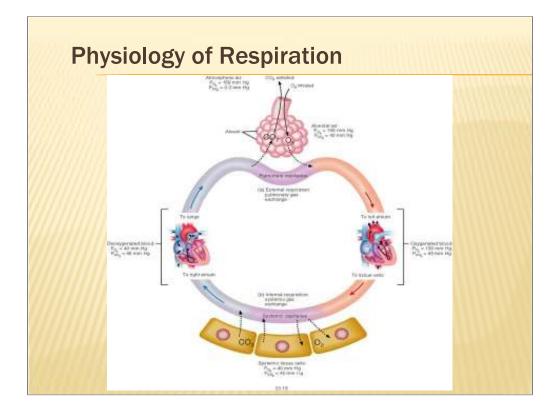
- +70% as bicarbonate ion (HCO₃⁻) dissolved in plasma
- +23% bound to hemoglobin
- +7% as CO₂ dissolved in plasma


× Oxygen

+99% bound to hemoglobin

+1% as O_2 dissolved in plasma

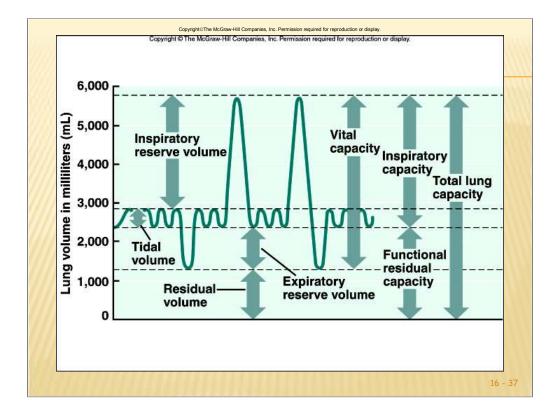

Carbon monoxide poisoning occurs because


CO binds to hemoglobin more readily than O₂

CONTROL OF BREATHING

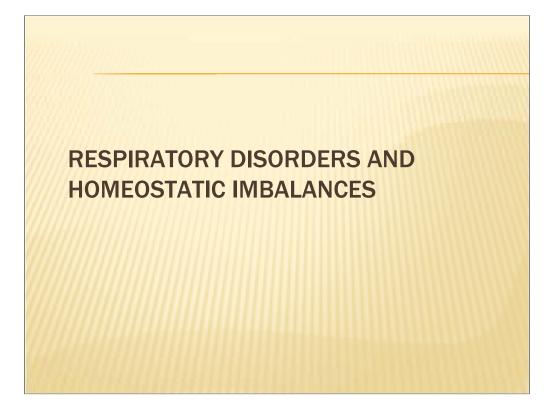
- The most important factor affecting the rhythmicity center is CO₂
- ★↑ in arterial CO₂ causes ↑ in acidity of cerebrospinal fluid (CSF)
- * 1 in CSF acidity is detected by pH sensors in medulla
- ★ medulla ↑ rate and depth of breathing

RESPIRATORY VOLUMES – IMPORTANT!


Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

NAME	VOLUME*	DESCRIPTION
Tidal volume (TV)	500 ml.	Volume moved in or out of longs during respiratory cycle
Inspiratory asserve volume (IIIV)	5,000 mL	Volume that can be inhaled during forced bieathing in addition to tidal volume
Expiratory sewerce volume (ERV)	1,100 mt	Volume that can be excluded during forced broathing in addition to tidal volum
Besidual volume (RV)	1,200 ml	Volume that remains in lungs even after maximal expiration
hispiratory capacity (IK3)	5.500 ml.	Mattimum volume of air that can be inhaled following exhaustion of tidal volume: 3C = TV = 10V
Paneminal residual cognetity (PBC)	2,500 ml.	Weburne of air that nemains in the lungs following exhalation of talal volume: FRC + ERV + RV
Vital capacity (VC)	4,600 ml.	Maximum volume of air that can be exhaled after taking the deepest breath possible: VC = TV + BV + BV
Total lung supacity (TLC)	5.800 mL	Total volume of air that the lungs can hold: TLC = VC = 10°

Wates are typical for a talk young adult.


This is found on Page 754 in your book! Know it! Know it! Know it!

16 - 36

RESPIRATORY VOLUMES – IMPORTANT!

× Example: + A male that is 40 years old and is 180 cm tall, has: TV = 547 mlIRV = 3300 ml ERV = 1300 ml RV = 1280 ml Calculate: IC = TV+IRV 547 + 3300 = 3847 ml FRC = ERV + RV 1300 + 1280 = 2580 ml VC = TV + IRV +ER\$47 + 3300 + 1300 = 5147 ml TLC = VC + RV5147 + 1280 = 6427 ml Normal VC = 4175 ml and normal TLC = 5800 ml. Does this person have good lungs? 16 - 38

Bronchiogenic Carcinoma (Lung Cancer)

- * Most fatal cancer in the U.S.
- × Highly metastatic
- Substant State State
- Starts in the walls of the bronchi due to irritation of the bronchiole epithelium
- Common irritants include smoking, pollution, dust particles
- 20 times more prevalent in smokers than non- smokers

Emphysema

- * "Blown up or full of air"
- A condition where the alveolar walls lose their elasticity and remain filled with air during expiration
- Alveoli become damaged and eventually merge together to form large air sacs with reduced overall volume
- * Patients often develop a barrel chest
- Generally caused by cigarettes, pollution, industrial dust particles

Influenza

- Caused by one of many viruses
- × Antibiotics cannot help
- × Medications used to treat the symptoms
 - + sneezing coughing
 - + congestion rhinorrhea
- May result in rhinitis: inflammation of the nasal mucosa
- × Commonly known as the flu

Pneumonia

- Acute infection or inflammation of the alveoli of the lungs
- Most common infectious cause of death in the U.S.
- Alveolar sacs fill with fluid and dead white blood cells reducing the amount of functional surface area of the lungs
- Most commonly caused by bacterium
 + Streptococcus pneumoniae
- Affects those in poor health or compromised immune system

- x 10,000 infant deaths per year in the U.S.
- Cause is not known but thought to be caused by an infectious agent or compressed carotid artery
- * Most deaths occur in the fall or winter
- Over 50% of SIDS death children had an upper respiratory infection within the past two weeks
- May also be caused by improper positioning for sleeping in the crib

Tuberculosis (Tb)

- Caused by a bacterium
 + Mycobacterium tuberculosis
- An infectious communicable disease that destroys the lung tissue and pleura
- Replaced by fibrous connective tissue called tubercles
- Disease is spread by inhalation of the bacterium