Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. T = 12,000 K T = 6000 K T = 3000 K $\lambda_m \approx 250 \; nm \qquad \qquad \lambda_m \approx 500 \; nm \qquad \qquad \lambda_m \approx 1000 \; nm$ visible unit 4 light Light, Atoms, Brightness And **Telescopes** 500 1000 1500 2000 Wavelength (nm) →

Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

В

Light – the Astronomer's Tool

- Due to the vast distances, with few exceptions, direct measurements of astronomical bodies are not possible
- We study remote bodies indirectly by analyzing their light
- Understanding the properties of light is therefore essential
- Care must be given to distinguish light signatures that belong to the distant body from signatures that do not (e.g., our atmosphere may distort distant light signals)

Properties of Light

- Light is radiant energy: it does not require a medium for travel (unlike sound!)
- Light travels at 299,792.458 km/s (or 186,282 miles/sec) in a vacuum (fast enough to circle the Earth 7.5 times in one second)
 - Speed of light in a vacuum is constant and is denoted by the letter "c"
 - However, the speed of light is reduced as it passes through transparent materials
 - The speed of light in transparent materials is dependent on color
 - Fundamental reason telescopes work the way they do!

Sometimes light can be described as a wave...

- The wave travels as a result of a fundamental relationship between electricity and magnetism
- A <u>changing</u> magnetic field creates an electric field and a <u>changing</u> electric field creates a magnetic field

...and sometimes it can be described as a particle!

- Light thought of as a stream of particles called photons
- Each photon particle carries energy, depending on its *frequency* or *wavelength*

So which model do we use?

- Well, it depends!
 - In a vacuum, photons travel in straight lines, but behave like waves
 - Sub-atomic particles also act as waves
 - *Wave-particle duality:* All particles of nature behave as both a wave and a particle
 - Which property of light manifests itself depends on the situation
 - We concentrate on the wave picture henceforth

Light and Color

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Colors to which the human eye is sensitive is referred to as the *visible spectrum*
- In the wave theory, color is determined by the light's wavelength (symbolized as λ)

- The *nanometer* (10⁻⁹ m) is the convenient unit
- Red = 700 nm (longest visible wavelength), violet
 = 400 nm (shortest visible wavelength)

The Visible Spectrum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Frequency

- Sometimes it is more convenient to talk about light's frequency
 - Frequency (or v) is the number of wave crests that pass a given point in 1 second (measured in Hertz, Hz)
 - Important relation: $v\lambda = c$
 - Long wavelenth = low frequency, low energy
 - Short wavelength = high frequency, high energy

White light – a mixture of all colors

The Electromagnetic Spectrum

- The *electromagnetic spectrum* is composed of radio waves, microwaves, infrared, visible light, ultraviolet, x rays, and gamma rays
- Longest wavelengths are more than 10³ km
- Shortest wavelengths are less than 10⁻¹⁸ m
- Various instruments used to explore the various regions of the spectrum

Infrared Radiation

- Sir William Herschel (around 1800) showed heat radiation related to visible light
- He measured an elevated temperature just off the red end of a solar spectrum – *infrared* energy
- Our skin feels infrared as heat

Ultraviolet Light

- J. Ritter in 1801
 noticed silver chloride
 blackened when
 exposed to "light" just
 beyond the violet end
 of the visible spectrum
- Mostly absorbed by the atmosphere
- Responsible for suntans (and burns!)

Radio Waves

- Predicted by Maxwell in mid-1800s, Hertz produced *radio waves* in 1888
- Jansky discovered radio waves from cosmic sources in the 1930s, the birth of radio astronomy
- Radio waves used to study a wide range of astronomical processes
- Radio waves also used for communication, microwave ovens, and search for extraterrestrials

X-Rays

- Roentgen discovered X rays in 1895
- First detected beyond the Earth in the Sun in late 1940s
- Used by doctors to scan bones and organs
- Used by astronomers to detect black holes and tenuous gas in distant galaxies

Gamma Rays

- Gamma Ray region of the spectrum still relatively unexplored
- Atmosphere absorbs this region, so all observations must be done from orbit!
- We sometimes see bursts of gamma ray radiation from deep space

Energy Carried by Electromagnetic Radiation

– Each photon of wavelength λ carries an energy E given by:

$$E = hc/\lambda$$

where h is Planck's constant

- Notice that a photon of short wavelength radiation carries more energy than a long wavelength photon
- Short wavelength = high frequency = high energy
- Long wavelength = low frequency = low energy

Matter and Heat

- The Nature of Matter and Heat
 - The ancient Greeks introduced the idea of the atom (Greek for "uncuttable"), which today has been modified to include a nucleus and a surrounding cloud of electrons
 - Heating (transfer of energy) and the motion of atoms was an important topic in the 1700s and 1800s

A New View of Temperature

- The Kelvin Temperature Scale
 - An object's temperature is directly related to its energy content and to the speed of molecular motion
 - As a body is cooled to zero Kelvin, molecular motion within it slows to a virtual halt and its energy approaches zero ⇒ no negative temperatures
 - Fahrenheit and Celsius are two other temperature scales that are easily converted to Kelvin

The Kelvin Temperature Scale

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

\$					
1	-	15,000,000K	~15,000,000°C	~27,000,000°F	Sun's core
1		5800K	5526℃	9980°F	Sun's surface
T	-	2000K	1727°C	3140°F	Light bulb filamen
		373K	100°C	212°F	Water boils
Ē.	_	310K	37°C	98.6°F	Human body
튙 -	175	293K	20°C	68°F	Room temperature
	-	273K	0°℃	32°F	Water freezes
F18 F18 F1	—	195K	−79°C	-110°F	Dry ice
E.		77K	−196°C	−321°F	Liquid nitrogen
Ē.	-	ОК	−273°C	-460°F	Absolute zero

Radiation and Temperature

- Heated bodies generally radiate across the entire electromagnetic spectrum
- There is one particular wavelength, λ_m , at which the radiation is most intense and is given by *Wien's Law:*

$$\lambda_{\rm m} = k/T$$

Where k is some constant and T is the temperature of the body

Radiation and Temperature

- Note hotter bodies radiate more strongly at shorter wavelengths
- As an object heats, it
 appears to change color
 from red to white to blue
- Measuring λ_m gives a body's temperature
- Careful: Reflected light does not give the temperature

Blackbodies and Wien's Law

- A blackbody is an object that absorbs all the radiation falling on it
- Since such an object does not reflect any light, it appears black when cold, hence its name
- As a blackbody is heated, it radiates more efficiently than any other kind of object
- Blackbodies are excellent absorbers and emitters of radiation and follow Wien's law
- Very few real objects are perfect blackbodies, but many objects (e.g., the Sun and Earth) are close approximations
- Gases, unless highly compressed, are not blackbodies and can only radiate in narrow wavelength ranges

Blackbodies and Wien's Law

The Structure of Atoms

- Nucleus Composed of densely packed neutrons and positively charged protons
- Cloud of negative electrons held in orbit B around nucleus by positive charge of protons
- Typical atom size: 10^{-10} m (= 1 Å = 0.1 nm)

The Chemical Elements

- An *element* is a substance composed only of atoms that have the same number of protons in their nucleus
- A neutral element will contain an equal number of protons and electrons
- The chemical properties of an element are determined by the number of electrons

Electron "Orbits"

 Quantized orbits are the result of the wave-particle duality of matter As electrons move from one orbit to another, they change their energy in discrete amounts

Energy Change in an Atom

- An atom's energy is increased if an electron moves to an outer orbit the atom is said to be *excited*
- An atom's energy is decreased if an electron moves to an inner orbit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Conservation of Energy

- The energy change of an atom must be compensated elsewhere *Conservation of Energy*
- Absorption and emission of EM radiation are two ways to preserve energy conservation
- In the photon picture, a photon is absorbed as an electron moves to a higher orbit and a photon is emitted as an electron moves to a lower orbit

Emission

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Absorption

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Spectroscopy

- Allows the determination of the composition and conditions of an astronomical body
- In *spectroscopy*, we capture and analyze a spectrum
- Spectroscopy assumes that every atom or molecule will have a unique spectral signature

Formation of a Spectrum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• A transition in energy level produces a photon

Types of Spectra

- Continuous spectrum

- Spectra of a blackbody
- Typical objects are solids and dense gases

- Emission-line spectrum

- Produced by hot, tenuous gases
- Fluorescent tubes, aurora, and many interstellar clouds are typical examples

- Dark-line or absorption-line spectrum

- Light from blackbody passes through cooler gas leaving dark absorption lines
- Fraunhofer lines of Sun are an example

Emission Spectrum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hydrogen atoms in tube Atom emits at wavelength set by the orbit its electron happens to be in. Thus, if electron jumps from orbit $3 \rightarrow 2$, the atom emits red light. If the electron jumps from $5 \rightarrow 2$, it emits violet, etc. No orbit jump corresponds to yellow or green light so those colors do not appear in the hydrogen spectrum.

Emission Spectrum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Helium atoms in tube The electron orbits for helium atoms are different from the orbits in hydrogen. The light they emit therefore differs from that of hydrogen.

Continuous and Absorption Spectra

Astronomical Spectra

Doppler Shift in Sound

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

B

• If the source of sound is moving, the pitch changes!

Redshift Wavelength appears increased. Bulb moves from 1 to 4.

If a source of light is set in motion relative to an observer, its spectral lines shift to new wavelengths in a similar way

Doppler Shift in Light

The shift in wavelength is given as

$$\Delta \lambda = \lambda - \lambda_{o} = \lambda_{o} v/c$$

where λ is the observed (shifted) wavelength, λ_o is the emitted wavelength, v is the source non-relativistic <u>radial</u> velocity, and v is the speed of light

Redshift and Blueshift

- An observed increase in wavelength is called a <u>redshift</u>, and a decrease in observed wavelength is called a <u>blueshift</u> (regardless of whether or not the waves are visible)
- Doppler shift is used to determine an object's velocity

Absorption in the Atmosphere

- Gases in the Earth's atmosphere absorb electromagnetic radiation to the extent that most wavelengths from space do not reach the ground
- Visible light, most radio waves, and some infrared penetrate the atmosphere through *atmospheric windows*, wavelength regions of high transparency
- Lack of atmospheric windows at other wavelengths is the reason for astronomers placing telescopes in space

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tools of the Trade: Telescopes

- Stars and other celestial objects are too far away to test directly
 - Astronomers passively collect radiation emitted from distant objects
 - Extremely faint objects make collection of radiation difficult
- Specialized Instruments Required
 - Need to measure brightness, spectra, and positions with high precision
 - Astronomers use mirrored telescopes and observatories
- Modern Astronomers are rarely at the eyepiece, more often they are at a computer terminal!
- YouTube Clips Now!!!

The Powers of a Telescope

- Collecting Power
 - Bigger telescope, more light collected!
- Focusing Power
 - Use mirrors or lenses to bend the path of light rays to create images
- Resolving Power
 - Picking out the details in an image

Light Gathering Power

- Light collected proportional to "collector" area
 - Pupil for the eye
 - Mirror or lens for a telescope
- Telescope "funnels" light to our eyes for a brighter image
- Small changes in
 "collector" radius give
 large change in number
 of photons caught

 Telescopes described by lens or mirror diameter (inches)

Focusing Power

Refraction

- Light moving at an angle from one material to another will bend due to a process called *refraction*
- Refraction occurs
 because the speed of
 light is different in
 different materials

Refraction

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Δ

Refraction

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Dispersion causes
 different colors to
 travel at different
 speeds through the
 same material
- Refraction is
 responsible for the
 distortion of the Sun
 near the horizon, but
 not the *Moon illusion*

Refraction

- Refraction is also responsible for *seeing*
 - Twinkling of stars
 - AKAScintillation
- Temperature and density differences in pockets of air shift the image of the star

Refracting Telescopes Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(40 inches) in diameter

- A lens employs refraction to bend light
- Telescopes that employ lenses to collect and focus light are called refractors

Disadvantages to Refractors

- Lenses have many disadvantages in large telescopes!
 - Large lenses are extremely expensive to fabricate
 - A large lens will sag in the center since it can only be supported on the edges
 - Dispersion causes images to have colored fringes
 - Many lens materials absorb shortwavelength light

Reflecting Telescopes

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Reflectors

- Used almost exclusively by astronomers today
- Twin Keck telescopes,
 located on the 14,000
 foot volcanic peak
 Mauna Kea in Hawaii,
 have 10-meter collector
 mirrors!
- Light is focused in front of the mirror

Reflecting Telescopes

nc. Permission required for reproduction or display.

- A *secondary mirror* may be used to deflect the light to the side or through a hole in the primary mirror
- Multi-mirror instruments and extremely thin *mirrors* are two modern approaches to dealing with large pieces of glass in a telescope system

Styles of Refractors

Resolving Power

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- A telescope's ability to discern detail is referred to as its *resolving power*
- Resolving power is limited by the wave nature of light through a phenomenon called *diffraction*

B

- Waves are diffracted as they pass through narrow openings
- A diffracted point source of light appears as a point surrounded by rings of light

Resolving Power and Aperture

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• Two points of light separated by an angle α (in arcsec) can be seen at a wavelength λ (in nm) only if the telescope diameter D (in cm) satisfies:

 $D > 0.02 \lambda/\alpha$

Increasing Resolving Power: Interferometers

- For a given
 wavelength, resolution
 is increased for a larger
 telescope diameter
- An *interferometer* accomplishes this by
 simultaneously
 combining
 observations from two
 or more widely-spaced
 telescopes

Interferometers

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- The resolution is determined by the individual telescope separations and not the individual diameters of the telescopes themselves
- Key to the process is the wave nature of interference and the electronic processing of the waves from the various telescopes

Detecting the Light

The Human Eye

- Once used with a telescope to record observations or make sketches
- Not good at detecting faint light, even with the 10-meter Keck telescopes

Photographic Film

- Chemically stores data to increase sensitivity to dim light
- Very inefficient: Only 4% of striking photons recorded on film

• Electronic Detectors

- Incoming photons strike an array of semiconductor pixels that are coupled to a computer
- Efficiencies of 75% possible
- CCD (Charged-coupled Device) for pictures

Nonvisible Wavelengths

- Many astronomical objects radiate in wavelengths other visible
 - Cold gas clouds
 radiate in the radio
 - Dust clouds radiate in the infrared
 - Hot gases around black holes emit x-rays

Radio Observatories

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Radio Observations

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• False color images are typically used to depict wavelength distributions in non-visible observations

Gamma Rays Bursts

- Exploring New Wavelengths: Gamma Rays
 - Gamma-ray astronomy began in 1965
 - By 1970s, gamma rays found to be coming from familiar objects: Milky Way center and remnants of exploded stars
 - 1967 gamma-ray bursts from space discovered by military satellites watching for Soviet nuclear bomb explosions
 - Source of gamma-ray bursts is likely due to colliding neutron stars!

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Major Space Observatories

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Spitzer Infrared Space Telescope

Extreme Ultraviolet Explorer - EUVE

Chandra X-ray Telescope Satellite

• Why put them in space?

Atmospheric Blurring

- Twinkling of stars in sky, called *scintillation*, is caused by moving atmospheric irregularities refracting star light into a blend of paths to the eye
- The condition of the sky for viewing is referred to as the *seeing*
- Distorted seeing can be improved by *adaptive optics*, which employs a powerful laser and correcting mirrors to offset scintillation

Light Pollution

Observatories

- The immense telescopes and their associated equipment require observatories to facilitate their use and protection from the elements
- Thousands of observatories are scattered throughout the world and are on every continent including Antarctica
- Some observatories:
 - Twin 10-meter Keck telescopes are largest in U.S.
 - The Hobby-Eberly Telescope uses 91 1-meter mirrors set in an 11-meter disk
 - Largest optical telescope, VLT (Very Large Telescope) in Chile, is an array of four 8-meter mirrors

Space vs. Ground-Based Observatories

- Space-Based Advantages
 - Freedom from atmospheric blurring
 - Freedom of atmospheric absorption
- Ground-Based Advantages
 - Larger collecting power
 - Equipment easily fixed
- Ground-Based Considerations
 - Weather, humidity, and haze
 - Light pollution

Going Observing

- To observe at a major observatory, an astronomer must:
 - Submit a proposal to a committee that allocates telescope time
 - If given observing time, assure all necessary equipment and materials will be available
 - Be prepared to observe at various hours of the day
- Astronomers may also "observe" via the Internet
 - Large data archives now exist for investigations covering certain wavelengths sometimes for the entire sky
 - http://mo-www.cfa.harvard.edu/MicroObservatory
 - http://www.lightbuckets.com/
 - slooh.com (live shows!)

Computers and Astronomy

- For many astronomers, operating a computer and being able to program are more important than knowing how to use a telescope
- Computers accomplish several tasks:
 - Solve equations
 - Move telescopes and feed information to detectors
 - Convert data into useful form
 - Networks for communication and data exchange

