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WHAT DO YOU THINK?

I1  What is the shape of the Earth’s orbit around
the Sun?

1?2 Do the planets orbit the Sun at constant speeds?
I3 Do the planets all orbit the Sun at the same speed?

I4 How much force does it take to keep an object
moving in a straight line at a constant speed?

I'5  How does an object’s mass differ when measured
on the Earth and on the Moon?

=

f“' he groundwork for modern science was set down
by Greek mathematicians and philosophers begin-
ning around 2500 years ago, when Pythagoras and

his followers began using mathematics to describe natural
phenomena. About 200 years later, Aristotle asserted that
the universe is comprehensible: It is governed by regular
laws. Just as important, the Greeks were also among the
first to leave a written record of their ideas, so that succeed-
ing generations could develop, criticize, and test their con-
clusions. This concept evolved into writing physical theories
quantitatively in mathematical terms so that we can test the
theories by observing nature.

Early Greek astronomers tried to explain the motion of
the five then-known planets: Mercury, Venus, Mars, Jupiter,
and Saturn. Most people at that time held a geocentric view
of the universe: They assumed that the Sun, the Moon, the
stars, and the planets revolve about the Earth. A theory of
the overall structure and evolution of the universe is called
a cosmology, so the prevailing cosmology was geocentric.
Based on observations of the motions of heavenly bodies,
the geocentric cosmology is so compelling that it held sway
for nearly 2000 years. It was only in the face of more and
more accurate observations of planet motions among the
stars that its validity came into question.

ORIGINS OF A SUN-CENTERED
UNIVERSE

The Greeks knew that the positions of the planets slowly
shift against the background of “fixed” stars in the constel-
lations. In fact, the word planet comes from a Greek term
meaning “wanderer.” The Greeks observed that planets do
not move at uniform rates through the constellations. From
night to night, as viewed in the northern hemisphere, they
usually move slowly to the left (eastward) relative to the
background stars. This eastward movement is called direct
motion. Occasionally, however, a planet seems to stop and
then back up for several weeks or months. This westward
movement is called retrograde motion.

These planetary motions are much slower than the
apparent daily movement of the entire sky caused by the
Earth’s rotation, and so they are superimposed on it. There-
fore, the planets always rise in the east and set in the west,
as the stars do. Both direct and retrograde motion are best
detected by mapping the nightly position of a planet against
the background stars over a long period. For example, Fig-
ure 2-1 shows the path of the planet Mars from July 2005
through February 2006.

Explaining the motions of the five planets in a geocentric
(Earth-centered) universe was one of the main challenges fac-
ing the astronomers of antiquity. The effort resulted in an
increasingly contrived model, especially in explaining retro-
grade motion. The mechanical description of a geocentric
model of the universe (see Guided Discovery: Geocentric
Cosmology) was complex, and, as observations improved,
the model increasingly failed to fit the data. Because sim-
plicity and accuracy are hallmarks of science, the complex
geocentric model had to give way to a simpler, more ele-
gant one. The ancient Greek astronomer Aristarchus pro-
posed a more straightforward explanation of planetary mo-
tion, namely, that all the planets, including the Earth, revolve
about the Sun.

The retrograde motion of Mars in the heliocentric cos-
mology, for example, occurs because the Earth overtakes
and passes the red planet, as shown in Figure 2-2. The occa-
sional retrograde movement of a planet is merely the result
of our changing viewpoint as we orbit the Sun—an idea that
is beautifully simple compared to a geocentric system with
all its complex planetary motions.

sake Insight into Science Keep it simple
= " When several competing theories describe

the same concepts with the same accuracy,
scientists choose the simplest one. That basic tenet,
formally expressed by William of Occam, in the
fourteenth century, is known as Occam’s razor. Indeed,
the original form of the heliocentric cosmology was ap-
pealing not because it was more accurate, it wasn’t, but
because it made the same predictions within a simpler
model than did the geocentric cosmology. Remember
Occam’s razor.

2-1 Copernicus devised the first
comprehensive heliocentric cosmology

Dethroning Earth from its central role in the universe was
difficult for a variety of reasons. Important among them is
the fact that the Earth just doesn’t seem to move! Com-
bining this with the human desire to be at the center of
everything and with geocentric religious teaching kept the
belief that the Earth is at the center of everything firmly
seated for more than 1300 years after Aristarchus proposed
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FIGURE 2-1 The Path of Mars in 2005-2006 From July 2005 through

< = February 2006, Mars moves across the constellations of Pisces, Aries, and Taurus.
From October 1 through December 12, 2005, Mars's motion will be retrograde.

the heliocentric (Sun-centered) cosmology. The person who
took on the ancient authorities was the sixteenth-century
Polish lawyer, physician, mathematician, economist, canon,
and artist, Nicolaus Copernicus.
o Copernicus turned his attention to astronomy in
3 ™ the early 1500s. He found that by assuming that
everything orbits the Sun rather than the Earth, he
could determine which planets are closer to the Sun than the
Earth and which are farther away. Because Mercury and
Venus are always observed fairly near the Sun, Copernicus
correctly concluded that their orbits must lie inside that of

the Earth. The other planets visible to the naked eye—Mars,
Jupiter, and Saturn—can be seen high in the sky in the
middle of the night, when the Sun is far below the horizon.
This can occur only if the Earth comes between the Sun and
a planet. Copernicus therefore concluded that the orbits of
Mars, Jupiter, and Saturn lie outside the Earth’s orbit. Three
more-distant planets (Uranus, Neptune, and Pluto) were dis-
covered after the telescope was invented.

The geometrical arrangements among the Earth, another
planet, and the Sun are called configurations. For example,
when Mercury or Venus is directly between the Earth and
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FIGURE 2-2 A Heliocentric
n Explanation of Planetary Motion
The Earth travels around the Sun
more rapidly than does Mars. Consequently,
as the Earth overtakes and passes this slower-
moving planet, Mars appears (from points
4 through 6) to move backward among the
background stars for a few months.
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he Greeks developed many theories to account for

retrograde motion and the resulting loops that the
planets trace out against the background stars. One of
the most successful ideas was expounded by the last of
the great ancient Greek astronomers, Ptolemy, who lived
in Alexandria, Egypt, 1900 years ago. The basic con-
cepts are sketched in the accompanying figures. Each
planet is assumed to move in a small circle called an
epicycle, the center of which moves in a larger circle
called a deferent, whose center is offset from the Earth.
As viewed from Earth, the epicycle moves eastward
along the deferent, and both circles rotate in the same
direction (counterclockwise).

Most of the time, the motion of the planet on its epi-
cycle adds to the eastward motion of the epicycle on the
deferent. Thus, the planet is seen to be in direct (eastward)
motion against the background stars throughout most of
the year. However, when the planet is on the part of its
epicycle nearest the Earth, its motion along the epicycle
subtracts from the motion of the epicycle along the defer-
ent. The planet thus appears to slow and then halt its usual
eastward movement among the constellations, even seem-
ing to go backward for a few weeks or months. Using this
concept of epicycles and deferents, Greek astronomers were
able to explain the retrograde loops of the planets.

/ Epicycle

Planet moves
rapidly eastward

® .
along epicycle
Epicycle moves
slowly eastward
along deferent

— Deferent

As seen from Earth,
planet moves
eastward

(direct motion)
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Using the wealth of astronomical data in the library
at Alexandria, including records of planetary positions
covering hundreds of years, Ptolemy deduced the sizes of
the epicycles and deferents and the rates of revolution
needed to produce the recorded paths of the planets. After
years of arduous work, Ptolemy assembled his calcula-
tions in the Almagest, in which the positions and paths of
the Sun, Moon, and planets were described with unpre-
cedented accuracy. In fact, the Almagest was so success-
ful that it became the astronomer’s bible. For more than
1000 years, Ptolemy’s cosmology endured as a useful des-
cription of the workings of the heavens.

Eventually, however, the commonsense explanation of
the Earth-centered cosmology began to go awry. Errors
and inaccuracies that were unnoticeable in Ptolemy’s day
compounded and multiplied over the years, especially er-
rors due to precession, the slow change in the direction of
the Earth’s axis of rotation. Fifteenth-century astronomers
made some cosmetic adjustments to the Ptolemaic system.
However, the system became less and less satisfactory as
more complicated and arbitrary details were added to keep
it consistent with the observed motions of the planets.
After Newton’s time, scientists knew that orbital motion
required a force acting on the body. However, nothing in
Ptolemy’s epicycle theory produced such a force.

\ Epicycle moves
slowly eastward

along deferent

Planet moves —
rapidly westward
along epicycle

As seen from Earth,
planet moves
westward
(retrograde motion)

b

A Geocentric Explanation of Planetary Motion Each planet revolves about an epicycle, which in

5

2 “:.J turn revolves about a deferent centered approximately on the Earth. As seen from Earth, the
speed of the planet on the epicycle alternately (a) adds to or (b) subtracts from the speed of the
epicycle on the deferent, thus producing alternating periods of direct and retrograde motion.
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N'\QR % lFIGURE 2-3 Planetary Configurations It is useful

o) 7 to specify key points along a planet’s orbit, as shown in
“Perse ¥ this figure. These points identify specific geometric
arrangements between the Earth, another planet, and the Sun.

the Sun, as in Figure 2-3, we say the planet is in a configu-
ration called an inferior conjunction; when either of these
planets is on the opposite side of the Sun from the Earth, its
configuration is called a superior conjunction.

The angle between the Sun and a planet as viewed from
the Earth is called the planet’s elongation. A planet’s elon-
gation varies from zero degrees to a maximum value, de-
pending upon where we see it in its orbit around the Sun. At
greatest eastern or greatest western elongation, Mercury and
Venus are as far from the Sun in angle as they can be. This
is about 28° for Mercury and about 47° for Venus. When
either Mercury or Venus rises before the Sun, it is visible in
the eastern sky as a bright “star” and is often called the
“morning star.” Similarly, when either of these two planets
sets after the Sun, it is visible in the western sky and is then
called the “evening star.”” Because these two planets are not
always at their greatest elongations, they are often very close
in angle to the Sun and therefore hard to see. This is espe-
cially true of Mercury, which is never more than 28° from
the Sun, while Venus is often nearly halfway up the sky at
sunrise or sunset and therefore quite noticeable at these
times. Because they are so bright and sometimes appear to
change color due to motion of the Earth’s atmosphere,
Venus and Mercury are often mistaken for UFOs. (The same
motion of the air causes the road in front of your car to
shimmer on a hot day.)

Planets whose orbits are larger than Earth’s have differ-
ent configurations. For example, when Mars is located be-
hind the Sun, as seen from Earth, it is said to be in con-
junction. When it is opposite the Sun in the sky, the planet

is at opposition. It is not difficult to determine when a
planet happens to be located at one of the key positions in
Figure 2-3. For example, when Mars is at opposition, it
appears high in the sky at midnight.

It is easy to follow a planet as it moves from one con-
figuration to another. However, these observations alone do
not tell us the planet’s actual orbit, because the Earth, from
which we make the observations, is also moving. Copernicus
was therefore careful to distinguish between two character-
istic time intervals, or periods, of each planet.

Recall from your study of the Moon in Chapter 1 that
the sidereal period of orbit is the true orbital period. A
planet’s sidereal period is the time it takes the planet to com-
plete one circuit around the Sun as would be measured by a
fixed observer at the Sun’s location watching each planet
move through the background stars. The sidereal period
determines the length of a year for each planet. Another use-
ful time interval for astronomers is the synodic period. The
synodic period is the time that elapses between two succes-
sive identical configurations as seen from the Earth. It can
be from one opposition to the next, for example, or from
one conjunction to the next (Figure 2-4). It tells us, for ex-
ample, when to expect a planet to be closest to the Earth
and, therefore, most easily studied.

Thus, nearly 500 years ago, Copernicus was able to ob-
tain the first six entries shown in Table 2-1 (the others are
contemporary results included for completeness). Coper-
nicus was then able to devise a straightforward geometric
method for determining the distances of the planets from the
Sun. His answers turned out to be remarkably close to the
modern values, as shown in Table 2-2. From these two
tables it is apparent that the farther a planet is from the Sun,
the longer it takes to complete its orbit.

Ea\'th's Orbj¢

Inferior
conjunction

Inferior
conjunction

I FIGURE 2-4 Synodic Period The time between consecutive
conjunctions of the Earth and Mercury is 116 days. Typical of synodic
periods for all planets, the location of the Earth is different at the
beginning and end of the period. You can visualize the synodic periods
of the exterior planets by putting the Earth in Mercury’s place in this
figure and putting one of the outer planets in the Earth’s place.
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TABLE 2-1 Synodic and Sidereal Periods
of the Planets (in Earth Years)

Synodic Sidereal

Period Period
Mercury 0.318 yr 0.241 yr
Venus 1.599 yr 0.616 yr
Earth — 1.0yr
Mars 2.136 yr 1.9yr
Jupiter 1.092 yr 11.9yr
Saturn 1.035 yr 29.5 yr
Uranus 1.013 yr 84.0 yr
Neptune 1.008 yr 164.8 yr
Pluto 1.005 yr 248.5 yr

Insight into Science Take a fresh look When the
science is hard to visualize, try another perspective.
For example, a planet’s sidereal period of orbit is easy
to understand from the perspective of the Sun but
more complicated from the Earth. The synodic period
of each planet, on the other hand, is easily determined
from the Earth. As we will see, especially when we
study Einstein’s theories of relativity, each of these
perspectives is called a frame of reference.

Copernicus presented his heliocentric cosmology, in-
cluding supporting observations and calculations, in a book
entitled De revolutionibus orbium coelestium (On the Revo-
lutions of the Celestial Spheres), which was published in
1543, the year of his death. Copernicus’s great insight was
the simplicity of a heliocentric cosmology compared to geo-
centric views. However, Copernicus incorrectly assumed
that the planets travel along circular paths around the Sun.
As a result, his predictions were no more accurate than
those of a geocentric theory!

2-2 Tycho Brahe made astronomical
observations that disproved ancient
ideas about the heavens

In November 1572, a bright star suddenly appeared in the
constellation Cassiopeia. At first it was even brighter than
Venus, but then it began to grow dim. After 18 months it
faded from view.

TABLE 2-2 Average Distances of the Planets
from the Sun

Measurement (AU)

By Copernicus Modern
Mercury 0.38 0.39
Venus 0.72 0.72
Earth 1.00 1.00
Mars 1.52 1.52
Jupiter 5.22 5.20
Saturn 9.07 9.54
Uranus Unknown 19.19
Neptune Unknown 30.06
Pluto Unknown 39.53

Modern astronomers recognize this event as a super-
nova explosion, the violent death of a certain type of star
(see Chapter 12). In the sixteenth century, however, the pre-
vailing opinion was quite different. Teachings dating back to
Avristotle and Plato argued that the heavens were permanent
and unalterable. Consequently, the “‘new star” of 1572 could
not really be a star at all, because the heavens do not change.
It must instead be some sort of bright object quite near
Earth, perhaps not much farther away than the clouds over-
head. A 25-year-old Danish astronomer named Tycho Brahe
realized that straightforward observations might reveal the
distance to this object.

o It is everyone’s common experience that when you
= > walk from one place to another, nearby objects

appear to change position against the background
of more distant objects. Furthermore, the closer an object is,
the more you have to change the angle at which you observe
it as you move. This apparent change in position of the
object with the changing position of the observer is called
parallax (Figure 2-5).

Tycho reasoned as follows: If the new star is nearby, its
position should shift against the background stars over the
course of a night, as shown in Figure 2-6a. His careful
observations failed to disclose any parallax, and so the new
star had to be far away, farther from Earth than anyone
had imagined (Figure 2-6b). Tycho summarized his findings
in a small book, De stella nova (On the New Star), pub-
lished in 1573.

Tycho’s astronomical records were soon to play an im-
portant role in the development of a heliocentric cosmol-
ogy. From 1576 to 1597, Tycho made comprehensive ob-
servations, measuring planetary positions with an accuracy
of 1 arcminute, about as precise as is possible with the naked
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I FIGURE 2-5 Parallax Nearby objects are viewed at different
angles from different places. These objects also appear to be in a
different place with respect to more distant objects when viewed at
the same time by observers located at different positions. Both effects
are called parallax, and they are used by astronomers, surveyors, and
sailors to determine distances.

eye. Arcminute (arcmin) is defined in An Astronomer’s
Toolbox 1-1. Upon his death in 1601, most of these invalu-
able records were given to his gifted assistant, Johannes
Kepler.
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KEPLER’S AND NEWTON'S LAWS

Until Johannes Kepler’s time, astronomers had
= = assumed that heavenly objects move in circles. For

philosophical and aesthetic reasons, circles were
considered the most perfect and most harmonious of all geo-
metric shapes. However, using circular orbits failed to yield
accurate predictions for the positions of the planets. For
years, Kepler tried to find a shape for orbits that would fit
Tycho Brahe’s observations of the planets’ positions against
the background of distant stars. Finally, he began working
with a geometric form called an ellipse.

VINk
& o~

2-3 Kepler’s laws describe orbital shapes,
changing speeds, and the lengths of
planetary years

An ellipse can be drawn as shown in Figure 2-7a. Each
thumbtack is at a focus (plural foci). The longest diameter
across an ellipse, called the major axis, passes through both
foci. Half of that distance is called the semimajor axis,
whose length is usually designated by the letter a. In astron-
omy, the length of the semimajor axis is also the average dis-
tance between a planet and the Sun.

To Kepler’s delight, the ellipse turned out to be the curve
he had been searching for. Predictions of the locations of
planets based on elliptical paths were in very close agree-
ment with where the planets actually were. He published
this discovery in 1609 in a book known today as New

Actual location
/ of supernova

I FIGURE 2-6  The Parallax of a Nearby
Object in Space Tycho thought that the Earth
doesn’t rotate and that the stars revolve around
it. From our modern perspective, the changing
position of the supernova would be due to the
Earth’s rotation as shown in this figure.

(a) Tycho Brahe argued that if an object is near
the Earth, its position relative to the
background stars should change over the course
of a night. (b) Tycho failed to measure such
changes for the supernova in 1572. This is
illustrated in (b) by the two telescopes being
parallel to each other. He therefore concluded
that the object was far from the Earth.
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FIGURE 2-7 Ellipse (a) The construction of an ellipse: An ellipse can be drawn with a pencil,
a loop of string, and two thumbtacks, as shown in this figure. If the string is kept taut, the pencil
traces out an ellipse. The two thumbtacks are located at the two foci of the ellipse. (b) A series of
ellipses with different eccentricities, e. Eccentricities range between 0 (circle) to just under 1.0

(almost a straight line).

Astronomy. This important discovery is now considered the
first of Kepler’s laws:

Ellipses have two extremes. The roundest ellipse is a circle.
The most elongated ellipse approaches being a straight line.
The shape of a planet’s orbit around the Sun is described
by its orbital eccentricity, designated by the letter e, which
ranges from O (circular orbit) to just under 1.0 (nearly a
straight line). Figure 2-7b shows a sequence of ellipses and
their associated eccentricities. Observations have since re-
vealed that there is no object at the second focus of each
elliptical planetary orbit.

Tycho’s observations also showed Kepler that planets
do not move at uniform speeds along their orbits. Rather, a
planet moves most rapidly when it is nearest the Sun, a point
on its orbit called perihelion. Conversely, a planet moves
most slowly when it is farthest from the Sun, a point called
aphelion.

After much trial and error, Kepler discovered a way to
describe how fast a planet moves anywhere along its orbit.
This discovery, also published in New Astronomy, is illus-
trated in Figure 2-8. Suppose that it takes 30 days for a
planet to go from point A to point B. During that time, the
line joining the Sun and the planet sweeps out a nearly tri-
angular area (shaded in Figure 2-8). Kepler discovered that
the line joining the Sun and the planet sweeps out the same
area during any other 30-day interval. In other words, if the
planet also takes 30 days to go from point C to point D,
then the two shaded segments in Figure 2-8 are equal in

area. Kepler’s second law, also called the law of equal areas,
can be stated thus:

The physical content of Kepler’s second law is that each
planet’s speed decreases as it moves from perihelion to aphe-

Aphelion @

Cof sun
Perihelion —@ ‘

D®

FIGURE 2-8 Kepler's First and Second Laws According to
Kepler’s first law, every planet travels around the Sun along an
elliptical orbit with the Sun at one focus. According to his second
law, the line joining the planet and the Sun sweeps out equal areas in
equal intervals of time. Note: This drawing shows a highly elliptical
orbit, with e = 0.74. Even though this is a much greater eccentricity
than that of any planet in the solar system, the concept still applies
to all planets and other orbiting bodies.
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lion. The speed then increases as the planet moves from
aphelion toward perihelion.
110, Kepler was also able to relate a planet’s year to its
3 . distance from the Sun. This discovery, published in
1619, stands out because of its impact on future
developments in astronomy. Now called Kepler’s third law,
it predicts the planet’s sidereal period if we know the length
of the semimajor axis of the planet’s orbit:

The relationship is easiest to use if we let P represent the
sidereal period in Earth years and a represent the length of
the semimajor axis measured in astronomical units (as we
discussed in An Astronomer’s Toolbox I-2). Now we can
write Kepler’s third law as

P2=ad

In other words, a planet closer to the Sun has a shorter
year than does a planet farther from the Sun. Combining
this with the second law reveals that planets closer to the
Sun move more rapidly than those farther away. Using data
from Tables 2-1 and 2-2, we can demonstrate Kepler’s third
law as shown in Table 2-3.

When Newton derived Kepler’s third law using the law
of gravitation, discussed below, he discovered that there
is contribution to the period from the mass of the planet.
However, this correction is vanishingly small for all the
planets in the solar system, which is why the above equa-
tion, as shown in Table 2-3, gives such good results for the
planets’ orbits.

{\ﬂ Loy

Insight into Science Theories and explanations
Scientific theories (or laws) based on observations can
be useful for making predictions even if the reasons
that these laws work are unknown. The explanation
for Kepler’s laws came decades after Kepler deduced
them, in 1665, when Newton applied his mathemati-
cal expression for gravitation, the force that holds the
planets in their orbits.

2-4 Galileo’s discoveries strongly supported
a heliocentric cosmology

While Kepler was making rapid progress in central Europe,
an Italian physicist was making equally dramatic observa-
tions in southern Europe. Galileo Galilei did not invent the
telescope, but he was one of the first people to point the new
device toward the sky and publish his observations. He saw
things that no one had ever imagined—mountains on the
Moon and sunspots on the Sun. He also discovered that
Venus exhibits phases.
&ka@' After only a few months of observation, Galileo
= “ noticed that the apparent size of Venus as seen
through his telescope was related to the planet’s
phase. Venus appears smallest at gibbous phase and largest
at crescent phase. A geocentric cosmology could not explain
why, but a heliocentric cosmology does. Galileo’s observa-
tions therefore supported the conclusion that Venus orbits
the Sun, not the Earth (Figure 2-9).
In 1610, Galileo also discovered four moons near
Jupiter. In honor of their discoverer, these are today called
the Galilean moons (or satellites, another term for moon).

s“@ﬁ TABLE 2-3 A Demonstration of Kepler’s Third Law

Sidereal Semimajor

period P (yr) axis a (AU) p2 = ad
Mercury 0.24 0.39 0.06 0.06
Venus 0.61 0.72 0.37 0.37
Earth 1.00 1.00 1.00 1.00
Mars 1.88 1.52 3.53 3.51
Jupiter 11.86 5.20 140.7 140.6
Saturn 29.46 9.54 867.9 868.3
Uranus 84.01 19.19 7,058 7,067
Neptune 164.79 30.06 27,160 27,160
Pluto 248.54 39.53 61,770 61,770
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FIGURE 2-9 The Changing Appearance of Venus This figure shows how the appearance
(phase) of Venus changes as it moves along its orbit. The number below each view is the angular
diameter (d) of the planet as seen from Earth, in arcseconds. Note that the phases correlate with
the planet’s angular size and its angular distance from the Sun, both as seen from Earth. These

observations clearly support the idea that Venus orbits the Sun.

Galileo concluded that the moons are orbiting Jupiter be-
cause they move across from one side of the planet to the
other. Confirming observations were made in 1620 (Figure
2-10). These observations all provided further proof that the
Earth is not at the center of the universe. Like the Earth in
orbit around the Sun, Jupiter’s four moons obey Kepler’s
third law: The square of a moon’s orbital period about
Jupiter is directly proportional to the cube of its average dis-
tance from the planet.

Galileo’s telescopic observations constituted the first
fundamentally new astronomical data since humans began
recording what they saw in the sky. In contradiction to then-
prevailing opinions, these discoveries strongly supported a
heliocentric view of the universe. Because Galileo’s ideas
could not be reconciled with certain passages in the Bible or
with the writings of Aristotle and Plato, the Roman Catholic
Church condemned him, and he was forced to spend his lat-
ter years under house arrest “for vehement suspicion of
heresy.”

A major stumbling block prevented seventeenth-century
thinkers from accepting Kepler’s laws and Galileo’s conclu-
sions about the heliocentric cosmology. At that time, the
relationships between matter, motion, and forces were not
understood. People did not know about the gravitational
force of the Sun, which keeps the planets in orbit. They
did not know how planets, since they had started in
orbit around the Sun, could keep moving. Once anything on

Earth is put in motion, it quickly comes to rest. Why didn’t
the planets orbiting the Sun stop, too?

All those mysteries were soon explained by the brilliant
and eccentric scientist Isaac Newton, who was born on
Christmas Day in 1642, less than a year after Galileo died.
In the decades that followed, Newton revolutionized science
more profoundly than any person before him, and in doing
s0, he found physical and mathematical proofs of the helio-
centric cosmology.

2-5 Newton formulated three laws that
describe fundamental properties of
physical reality

&um Until the mid-seventeenth century, virtually all
3| “ mathematical astronomy used the same approach.

Astronomers from Ptolemy to Kepler worked
empirically, that is, directly from data and observations.
They adjusted their ideas and calculations until they finally
came out with the right answers.

Isaac Newton introduced a new approach. He made just
three assumptions, now called Newton’s laws of motion,
which he applied to all forces and bodies. He also found a
formula for the force of gravity, the attraction between all
objects due to their masses. Newton then showed that Kep-
ler’s three laws mathematically and, hence, physically, fol-
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low from these laws. Using his formula, Newton accurately
described the observed orbits of the Moon, comets, and
other objects in the solar system. His laws also apply to the
motions of all bodies on the Earth.

Newton’s first law, the law of inertia, states that

A body remains at rest or moves in a straight line at a con-
stant speed unless acted upon by a net outside force.

At first, this law might seem to conflict with your everyday
experience. For example, if you shove a chair, it does not
continue at a constant speed forever but rather it comes to
rest after sliding only a short distance. From Newton’s view-
point, however, a “net outside force™ does indeed act on the
moving chair, namely, friction between the chair’s legs and
the floor. Without friction, the chair would continue in a
straight path at a constant speed. A force changes the mo-
tion of an object.

Newton’s first law tells us that there must be an outside
force acting on the planets. If there were no force acting on
them, they would move away from the Sun along straight-
line paths at constant speeds. In other words, they would
leave their curved orbits. Because this does not happen,
Newton concluded that some force confines the planets to
their elliptical orbits. As we shall see, that force is gravity.

Newton’s second assumption describes how a force
changes the motion of an object. To appreciate the concepts

uXx6
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IFIGURE 2-10 Jupiter and Its Largest Moons (a) In 1610
Galileo discovered four “stars” that move back and forth across
Jupiter. He concluded that they are four moons that orbit Jupiter
just as our Moon orbits the Earth. This figure shows observations
made by Jesuits in 1620. (b) This photograph, taken by amateur
astronomer C. Holmes, shows the four Galilean satellites alongside
an overexposed image of Jupiter. Each satellite would be bright
enough to be seen with the unaided eye were it not overwhelmed
by the glare of Jupiter. (b: Courtesy of C. Holmes)

of force and motion better, we must first understand
the quantities that describe motion: speed, velocity, and
acceleration.

Imagine an object in space. Push on the object and it be-
gins to move. At any moment, you can describe the object’s
motion by specifying both its speed and direction. Speed and
direction of motion together constitute the object’s velocity.
If you continue to push on the object, its speed will in-
crease—it will accelerate.

Acceleration is the rate at which velocity changes with
time. Because velocity involves both speed and direction, a
slowing down, a speeding up, or a change in direction are all
types of acceleration.

Suppose an object revolved about the Sun in a perfectly
circular orbit. This body would have acceleration that
involved only a change of direction. As this object moved
along its orbit, its speed would remain constant, but its
direction of motion would be continuously changing.
Therefore, it would still be continuously accelerating.

Newton’s second law says that the acceleration of an
object is proportional to the force acting on it. In other
words, the harder you push on an object, the greater the
resulting acceleration. Newton’s law also says that a greater
mass pushed or pulled by a force accelerates more slowly
than does an object of lesser mass pushed or pulled by the
same force. That is why by pushing a child’s wagon, you can
accelerate it faster than you can accelerate a car by pushing
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"ONCEPTIONS

Planet of the Apes (Twentieth Century Fox, 2001)

(The Kobal Collection)

e Fill irector Tim Burton rein-
g vents Pierre Boulle’s clas-
a.“r ' | sic novel in the newest Planet
" of the Apes movie. Set in the

‘ﬂ . 88 year 2029, the film opens on a

T = space station orbiting Saturn.
The station is shown to not be rotating. We know this
because the actors are standing and walking on the disk-
shaped floors, occasionally looking out windows along
the edge of the station. (If the station were rotating, the
actors would be standing facing inward on the outer,
curved edge of the structure, as was depicted in the

on it. Newton’s second law can be succinctly stated as an
equation. If a force acts on an object, the object will experi-
ence an acceleration such that

Force = mass x acceleration

The mass of an object is a measure of the total amount
of material in the object, which we measure in kilograms.
For example, the mass of the Sun is 2 x 10%° kg, the mass of
a hydrogen atom is 1.7 x 1027 kg, and the mass of the
author of this book is 83 kg. At rest, the Sun, a hydrogen
atom, and | have these same masses regardless of where we
happen to be in the universe.

It is important not to confuse the concept of mass with
that of weight. Weight is the force with which an object is
pulled down while on the ground (due to gravity’s attrac-
tion) or, equivalently, feels inside an accelerating rocket.
Force is usually expressed in pounds or newtons. For exam-
ple, the force with which | am pressing down on the ground
is 183 pounds.

But | weigh 183 pounds only on the Earth. | would
weigh less on the Moon. Orbiting in the Space Shuttle, my
apparent weight (measured by standing on a scale in the
shuttle), would be zero, but my mass would be the same as
when | am on Earth. An astronaut in the shuttle would still
have to push me with a force to get me to move. Whenever
we describe the properties of planets, stars, or galaxies, we
speak of their masses, never of their weights.

Newton’s final assumption, called Newton’s third law,
is the famous law of action and reaction:

Stanley Kubrick movie 2001: A Space Odyssey). The
actors wear normal shoes, and things lying on tables
remain in place even when the station undergoes slight
jostling.

A short time into the movie the hero enters a vehi-
cle, puts on a helmet that rests on his jacket, and leaves
the space station. It is worth noting that space helmets
are designed to be part of airtight spacesuits that protect
astronauts in case their spacecraft loses air pressure.

Describe the two scientific errors in Planet of the
Apes as described in the paragraphs above.

(Answers appear at the end of the book.)

Whenever one body exerts a force on a second body, the sec-
ond body exerts an equal and opposite force on the first body.

For example, | weigh 183 pounds, and so | press down on
the floor with a force of 183 pounds. Newton’s third law
says that the floor is also pushing up against me with an
equal force of 183 pounds. (If it was less, | would fall
through the floor, and if it was more, | would be lifted up-
ward.) In the same way, Newton realized that because the
Sun is exerting a force on each planet to keep it in orbit,
each planet must also be exerting an equal and opposite
force on the Sun. As each planet accelerates toward the Sun,
the Sun in turn accelerates toward each planet.

The Sun is pulling the planets, so why don’t they fall onto
it? Conservation of angular momentum, a fundamental con-
sequence of Newton’s second law of motion, provides the
answer. Angular momentum is a measure of how much
energy is stored in an object due to its rotation and revolution
(presented in An Astronomer’s Toolbox 2-1). As the orbiting
planets fall Sunward, their angular momentum provides them
with motion perpendicular to that infall, meaning that plan-
ets continually fall toward the Sun, but they continually miss
it. Because their angular momentum is conserved, planets nei-
ther spiral into the Sun or away from it. Angular momentum
remains constant unless acted on by an outside torque.

Angular momentum depends on three things: how fast
the body rotates or revolves, how much mass it has, and how
spread out that mass is. The greater a body’s angular motion
or mass, or the more the mass is spread out, the greater its
angular momentum. Consider, for example, a twirling ice
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Energy and Momentum

Scientists identify two types of energy that are available to
any object. The first, called kinetic energy, is associated
with the object’s motion. For speeds much less than the
speed of light, we can write the amount of kinetic energy,
KE, in an object as:

KE = Y2mv?

where m is the object’s mass (total number of particles)
and v is its velocity. Kinetic energy is a measure of how
much work the object can do on the outside world or,
equivalently, how much work the outside world has done
to put the object in motion.

Work is also a rigorously defined concept that often is
at odds with our intuition. It is defined as the product of
the force, F, acting on an object times the distance, d, over
which the object moves in the direction of the force:

W = Fd

For example, if | exert a horizontal force of 50 newtons
(a unit of force) and thereby move an object 10 meters in
that direction, then | have done 50 N x 10 m = 500 joules
of work. (I have used the relationship that 1 newton x
1 meter = 1 joule.)

The second type of energy is called potential energy. It
represents how much energy is stored in an object as a result
of its location in space. For example, if you hold a pencil
above the ground, the pencil has potential energy that can
be converted into kinetic energy by the Earth’s gravitational
force. How does that conversion get underway? Just let go
of the pencil.

There are various kinds of potential energy, such as
the potential energy stored in a battery and the potential
energy stored in objects under the influence of gravity. We
will focus on gravitational potential energy. Far from
extremely massive objects, like stars, or extremely dense
objects, like black holes, gravitational potential energy can
be written as:

PE = GmMI/r

where G = 6.668 x 10711 N m%/kg?, m is the mass of the
object whose gravitational potential energy you are meas-
uring, M is the mass of the object creating the gravitational
potential energy, and r is the distance between the centers
of masses of the object feeling the gravitational potential
energy and the object creating that energy.

Near the surface of the Earth, this equation simplifies to:

PE =mgh

AN-ASTRONOMER'’S TOOLBOX 2-1°%

where g = 9.8 m/s? is the gravitational acceleration at the
Earth’s surface, and h is the height of the object above the
Earth’s surface.

Potential energy can be converted into Kinetic energy
and vice versa. By dropping the pencil, its gravitational
potential energy begins decreasing while its Kinetic energy
begins increasing at the same rate. The pencil’s total energy
is conserved. Conversely, if you throw a pencil up in the air,
the Kkinetic energy you give it will immediately begin decreas-
ing, while its potential energy increases at the same rate.

Related to the motion of an object, and hence to its
kinetic energy, are the concepts of linear momentum, usu-
ally just called momentum, and angular momentum.
Momentum, p, is described by the equation:

p=my

where v is the velocity of the object. Both p and v are in
boldface to indicate that they both represent motion in
some direction or another, as well as having some numeri-
cal value. Simple algebra reveals that kinetic energy and
momentum are related by:

KE = p2/2m

Linear momentum, then, indicates how much energy is
stored in an object because of its motion in a straight line
(its linear motion).

Angular momentum, L, can be expressed mathemati-
cally as:

L=lw

where | is the moment of inertia of an object and wgives the
speed and direction in which it is revolving or rotating. Just
as the mass indicates how hard it is to change an object’s
straight-line motion, the moment of inertia indicates how
hard it is to change the rate at which an object rotates or
revolves. The moment of inertia depends on an object’s mass
and shape. Kinetic energy stored in angular motion can be
written:

KE = L2?/2]

Newton’s first law can also be expressed in terms of
conservation of linear momentum:

A body maintains its linear momentum unless acted upon
by a net external force.

Equivalently, for angular motion we can write the con-
servation of angular momentum:

(continued on the following page)
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A body maintains its angular momentum unless acted
upon by a net external torque.

Torques are created when a force acts on an object in
some direction other than toward the center of the object’s
angular motion, as shown in the figure. The Earth has angu-
lar momentum and keeps spinning on its rotational axis and
orbiting around the Sun. Likewise, the Moon has angular
momentum and keeps spinning on its rotation axis and
orbiting the Earth. Virtually all objects in astronomy have
angular momentum, and | think it’s fair to say that conser-
vation of angular momentum is among the most important
laws in the cosmos. After all, it is what keeps the planets in
orbit around the Sun, the moons in orbit around the plan-
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skater. She rotates with a constant mass, practically free of
outside forces. When she wishes to rotate more rapidly, she
decreases the spread of her mass distribution by pulling her
arms in closer to her body. According to the conservation of
angular momentum, as the spread of mass decreases, the rota-
tion rate must increase. In astronomy, we encounter many in-
stances of the same law, as giant objects, like stars, contract.

We have now reconstructed the central relationships
between matter and motion. Scientific belief in the heliocen-
tric cosmology still requires a force to hold the planets in
orbit around the Sun and the moons in orbit around the
planets. Newton identified that, too.

2-6 Newton'’s description of gravity accounts
for Kepler’s laws

Isaac Newton did not invent the idea of gravity. An educated
seventeenth-century person would understand that some
force pulls things down to the ground. It was Newton, how-
ever, who gave us a precise description of the action of grav-
ity, or gravitation, as it is more properly called. Using his

AN'ASTRONOMER’S TOOLBOX 2-1'(éoh

ets, the astronomical bodies rotating at relatively constant
rates, and many other rotation-related effects that we will
encounter throughout this book.

Try these questions: How does tripling the linear momen-
tum of an object change its kinetic energy? How does halv-
ing the angular momentum of an object change its kinetic
energy? How much work would you do if you pushed on
a desk with a force of 100 N and moved it 20 m? How
much work would you do if you pushed on a desk with a
force of 500 N and moved it 0 m? What two things can
you vary to change the angular momentum of an object?
(Answers appear at the end of the book.)

Angular Momentum and Torque (a) When a force acts through an
object’s rotation axis or toward its center of mass, then the force
does not exert a torque on the object. (b) When a force acts in
some other direction, then it exerts a torque, causing the body’s
angular momentum to change. If the object can spin around a fixed
axis, like a globe, then the rotation axis is the rod running through
it. If the object is not held in place, then the rotation axis is in a line
through a point called the object’s center of mass. The center of
mass of any object is the point that follows an elliptical, parabolic,
or hyperbolic path in a gravitational field. All other points in the
spinning object wobble as it moves.

first law, Newton proved mathematically that the force act-
ing on each of the planets is directed toward the Sun. This
discovery led him to suspect that the nature of the force
pulling a falling apple straight down to the ground is the
same as the nature of the force on the planets that is always
aimed straight at the Sun.

Newton succeeded in formulating a mathematical model
describing the behavior of the gravitational force that keeps
the planets in their orbits (presented in An Astronomer’s
Toolbox 2-2). Newton’s universal law of gravitation states:

Two bodies attract each other with a force that is directly
proportional to the product of their masses and inversely
proportional to the square of the distance between them.

In other words, gravitational force decreases with distance:
Move twice as far away from a body and you feel only one-
quarter of the force from it that you felt before.

Using his law of gravity, Newton found that he could
mathematically explain Kepler’s three laws. For example,
whereas Kepler discovered by trial and error that the period of
orbit, P, and average distance between the Sun and planet, a,
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GUIDED DISCOVERY,

In the two centuries between 1500 and 1700, human
understanding of the motion of celestial bodies and
the nature of the gravitational force that keeps them in
orbit surged forward as never before. Theories related to
this subject were developed by brilliant thinkers, whose
work established and verified the heliocentric model of
the solar system and the role of gravity.
Nicolaus Copernicus (1473-1543)
Copernicus was born in Torun,
Poland, the youngest of four chil-
dren. He pursued his higher edu-
cation in Italy, where he received a
doctorate in canon law and stud-
ied medicine. Copernicus developed
a heliocentric theory of the known
i universe, and published his work
(E. Lessing/Art Resource) - j 1543 under the title De revolu-
tionibus orbium coelestium. Copernicus became ill and
died just after receiving the first copy.
Tycho Brahe (1546-1601) and
Johannes Kepler (1571-1630)
Tycho, depicted within a portrait
of Kepler, was born to nobility in
the Danish city of Knudstrup,
which is now part of Sweden. At
age 20 he lost part of his nose in a
duel and wore a metal replacement
thereafter. In 1576 the Danish king
Frederick Il built Tycho an astro-
nomical observatory that Tycho
named Uraniborg. He rejected
Copernicus’s heliocentric theory
and the Ptolemaic geocentric system and devised a
halfway theory called the “Tychonic system.” According
to Tycho’s theory, the Earth is stationary, with the Sun
and Moon revolving around it, while all the other plan-
ets revolve around the Sun. Tycho died in 1601.

Kepler was educated in Germany, where he spent
three years studying mathematics, philosophy, and theol-
ogy. In 1596, Kepler published a booklet in which he at-
tempted to mathematically predict the planetary orbits.

(Painting by Jean-Leon
Huens, courtesy of
National Geographic
Society)

are related by P? = a3, Newton demonstrated mathematically
that this equation (corrected with a tiny contribution due to
the mass of the planet) follows from his law of gravitation.
Newton’s version of Kepler’s third law can be easily
recast to predict the orbits of any objects under the influence
of a gravitational attraction. Indeed, all three of Kepler’s
laws apply to all orbiting bodies. This includes moons orbit-

Astronomy’s Foundation Builders

- - -

Although his theory was altogether wrong, its boldness
and originality attracted the attention of Tycho Brahe,
whose staff Kepler joined in 1600. Kepler deduced his
three laws from Tycho’s observations.

Galileo Galilei (1564-1642) Born
in Pisa, Italy, Galileo studied medi-
cine and philosophy at the Univer-
sity of Pisa. He abandoned medi-
cine in favor of mathematics. He
held the chair of mathematics at the
University of Padua and eventually
returned to the University of Pisa as
a professor of mathematics. There
(Art Resource) Galileo formulated his famous law
of falling bodies: All objects fall with the same acceleration
regardless of their weight. In 1609 he constructed a tele-
scope and made a host of discoveries that contradicted the
teachings of Aristotle and the Roman Catholic Church. He
summed up his life’s work on motion, acceleration, and
gravity in the book Dialogues Concerning Two New
Sciences, published in 1632.

Isaac Newton (1642-1727) Al-
though he delighted in construct-
ing mechanical devices—sundials,
model windmills, a water clock,
and a mechanical carriage—New-
ton showed no exceptional aca-
demic ability at Cambridge Uni-
versity, where he received a
bachelor’s degree in 1665. While
(National Portrait Gallery, pursuing experiments in optics,
Londen) Newton constructed a reflecting
telescope and also discovered that white light is actually
a mixture of all colors. His major work on forces and
gravitation was the tome Philosophiae Naturalis Prin-
cipia Mathematica, which appeared in 1687. In 1704,
Newton published his second great treatise, Opticks, in
which he described his experiments and theories about
light and color. Upon his death in 1727, Newton was
buried in Westminster Abbey, the first scientist to be
so honored.

ing planets, artificial satellites orbiting the Earth, and even
two stars revolving about each other. Throughout this book,
we will see that Kepler’s three laws have a wide range of
practical applications.

Newton also discovered that some objects have nonel-
liptical orbits around the Sun. His equations led him to con-
clude that the orbits of some objects are parabolas and
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Gravitational Force

From Newton’s law of gravitation, if two objects having
masses m, and m,, are separated by a distance r, then the
gravitational force F between them is

F = G(m,m,/r?)

In this formula, G is the universal constant of gravita-
tion, whose value has been determined from laboratory
experiments:

G =6.668 x 1011 N m? kg

where N is the unit of force, a newton.

The equation F = G(m,m,/r?) gives, for example,
the force from the Sun on the Earth and, equivalently,
from the Earth on the Sun. If m, is the mass of the Earth
(6.0 x 1024 kg), m,, is the mass of the Sun (2.0 x 10%° kg),
and r is the distance from the Earth to the Sun (1.5 x
1011 m),

F=3.6x10%? N

This number can then be used in Newton’s second law,
F = ma, to find the acceleration of the Earth due to the
Sun. This yields:

hyperbolas (Figure 2-11). For example, comets hurtling to-
ward the Sun from the depths of space often follow para-
bolic or hyperbolic orbits.

Newton’s ideas turned out to be applicable in an incred-
ibly wide range of situations. The orbits of the planets and
their satellites could now be calculated with unprecedented
precision. Using Newton’s laws, mathematicians proved that

Hyperbola

Parabola
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o ma

g,y = F/M; = 6.0 x 1073 m/s?

Newton’s third law says that the Earth exerts the same
force on the Sun, so the Sun’s acceleration due to the
Earth’s gravitational force is

ag,, = F/m, = 1.8 x 10-8 m/s?

In other words, the Earth pulls on the Sun, causing
the Sun to move toward it. Because of the Sun’s greater
mass, however, the amount that the Sun accelerates the
Earth is more than 300,000 times the amount that the
Earth accelerates the Sun.

Try these questions: The Earth’s radius is 6.4 x 10 m
and 1 kg =2.2 Ib. What is the force that the Earth exerts
on you? What is the force that you exert on the Earth?
What is the Earth’s acceleration on you? What would
the Sun’s force be on the Earth, if our planet were twice
as far from the Sun as it is? How does that force com-
pare to the force from the Sun at our present location?
(Answers appear at the end of the book.)

the Earth’s axis of rotation must precess because of the grav-

itational pull of the Moon and the Sun on the Earth’s equa-
torial bulge (recall Figure 1-17).

S In addition, Newton’s laws and mathematical tech-

3 + niques were used to predict new phenomena.

Newton’s friend, Edmund Halley, was intrigued

by historical records of a comet that was sighted about every

S@R“’% I FIGURE 2-11 Conic Sections

3

A A Ellipse
+®@ A conic section is any one of a
Perse family of curves obtained by slicing a

Circle Ellipse Parabola Hyperbola

cone with a plane, as shown in this figure. The
orbit of one body about another can be an
ellipse, a parabola, or a hyperbola. Circular orbits
are possible because a circle is just an ellipse for
which both foci are at the same point.
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FIGURE 2-12 Halley’s Comet Halley’s Comet orbits the Sun
with an average period of about 76 years. During the twentieth
century, the comet passed near the Sun twice—once in 1910 and
again, shown here, in 1986. The comet will pass close to the Sun
again in 2061. While dim in 1986, it nevertheless spread more than 5°
across the sky, or 10 times the diameter of the Moon. (Science Photo
Library)

76 years. Using Newton’s methods, Halley worked out the
details of the comet’s orbit and predicted its return in 1758.
It was first sighted on Christmas night of that year, and to
this day the comet bears Halley’s name (Figure 2-12).
Perhaps the most dramatic confirmation of Newton’s
ideas was their role in the discovery of the eighth planet in
our solar system. The seventh planet, Uranus, had been dis-
covered accidentally by William Herschel in 1781 during a
telescopic survey of the sky. Fifty years later, however, it was

clear that Uranus was not following the orbit predicted by
Newton’s laws. Two mathematicians, John Couch Adams in
England and Urbain-Jean-Joseph Leverrier in France, inde-
pendently calculated that the deviations of Uranus from its
predicted orbit could be explained by the gravitational pull
of a then—unknown, more distant planet. Each man pre-
dicted that the planet would be found at a certain location
in the constellation of Aquarius in September 1846. A tele-
scopic search on September 23, 1846, revealed Neptune less
than 1° from its calculated position. Although sighted with
a telescope, Neptune was really discovered with pencil and
paper (Figure 2-13).

Insight into Science Quantify predictions Mathe-
matics provides a language that enables science to make
guantitative predictions that can be checked by anyone.
For example, we have seen in this chapter how Kepler’s
third law and Newton’s universal law of gravitation
correctly predict the motion of objects under the influ-
ence of the Sun’s gravitational attraction.

Over the years, Newton’s ideas were successfully used
to predict and explain motion here on Earth and throughout
the universe. Even today, as we send astronauts into Earth
orbit and send probes to the outer planets, Newton’s equa-
tions are used to calculate the orbits and trajectories of the
spacecraft.

It is a testament to Newton’s genius that his three laws
were precisely the basic ideas needed to understand the
motions of the planets. Newton brought a new dimension of
elegance and sophistication to our understanding of the
workings of the universe.

FIGURE 2-13 Uranus and Neptune The
discovery of Neptune was a major triumph for
Newton’s laws. In an effort to explain why Uranus
(shown on the left, with two of its moons)
deviated from its predicted orbit, astronomers
predicted the existence of Neptune (shown on the
right, with one of its moons indicated by an
arrow). Uranus and Neptune are nearly the same
size; both have diameters about 4 times that
of Earth. (a: John Chumack/Photo Researchers;

b: NASA)
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Frontiers yet to be discovered

The science related to forces and orbits described in this chap-
ter was well established by the beginning of the nineteenth
century. However, questions remained. Careful observation
revealed that Newton’s law of gravitation gave very slightly
inaccurate predictions for the orbital path of Mercury. We
will see in Chapter 13 that this problem was resolved by
Albert Einstein. Nevertheless, one fundamental question from
this chapter’s material remains to be answered: What is
“mass”? Many physicists studying the building blocks of

WHAT DID YOU KNOW?

I1 What is the shape of the Earth’s orbit around the
Sun? All planets have elliptical orbits around the Sun.

|2 Do the planets orbit the Sun at constant speeds? No.
The closer a planet is to the Sun in its orbit, the faster
it is moving. It moves fastest at perihelion and slowest
at aphelion.

|3 Do the planets all orbit the Sun at the same speed? No.
A planet’s speed depends on its average distance from
the Sun. The closest planet moves fastest, the most
distant planet moves slowest.

KEY WORDS
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matter (such as the elementary particles protons, neutrons,
and electrons) believe that mass comes from the presence of a
particle permeating the universe called the Higgs boson.
When elementary particles interact with it, they gain the prop-
erty we call mass. Searches for Higgs bosons are underway at
high-energy particle accelerators such as CERN, near Geneva,
Switzerland, and the Fermi National Accelerator in Illinois. If
these experiments are successful, then we may know the ori-
gin of mass by the end of this decade.

@ For Further Reading

I4 How much force does it take to keep an object moving
in a straight line at a constant speed? Unless an object
is subject to an outside force, like friction, it takes no
force at all to keep it moving in a straight line at a
constant speed.

|5 How does an object’s mass differ when measured on
Earth and on the Moon? Assuming the object doesn’t
shed or collect pieces, its mass remains constant
whether on the Earth or on the Moon. Its weight,
however, is less on the Moon.

orbital eccentricity, 50
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superior conjunction, 47

ellipse, 49 law of inertia, 53 synodic period, 57

elongation, 47 mass, 54 universal constant of gravitation, 58
epicycle, 46 momentum, 55 universal law of gravitation, 56
focus (of an ellipse), 49 Newton’s laws of motion, 52 velocity, 53

force, 53 Occam’s razor, 44 weight, 54

Galilean moons (satellites), 51 opposition, 47 work, 55

KEY IDEAS

= The ancient Greeks laid the groundwork for progress in
science. Early Greek astronomers devised a geocentric cosmology,
which placed the Earth at the center of the universe.

&8 Origins of a Sun-Centered Universe

= Copernicus’s heliocentric (Sun-centered) theory simplified
the general explanation of planetary motions compared to
the geocentric theory.

= In a heliocentric cosmology, the Earth is but one of several
planets that orbit the Sun.

= The sidereal orbital period of a planet is measured with
respect to the stars. It determines the length of the planet’s
year. Its synodic period is measured with respect to the Sun
as seen from the moving Earth (for example, from one
opposition to the next).



b1 Gravitation and the Waltz of the Planets

8 Kepler’s and Newton’s Laws

= Ellipses describe the paths of the planets around the Sun
much more accurately than do circles. Kepler’s three laws
give important details about elliptical orbits.

= The invention of the telescope led Galileo to new
discoveries, such as the phases of Venus and the moons of
Jupiter, that supported a heliocentric view of the universe.

- Newton based his explanation of the universe on three
assumptions now called Newton’s laws of motion. These

REVIEW QUESTIONS

How did Copernicus explain the retrograde motions
of the planets?

Which planets can never be seen at opposition? Which
planets can never be seen at inferior conjunction?

At what configuration (superior conjunction, greatest
eastern elongation, etc.) would it be best to observe
Mercury or Venus with an Earth-based telescope? At what
configuration would it be best to observe Mars, Jupiter, or
Saturn? Explain your answers.

What are the synodic and sidereal periods of a planet?

What are Kepler’s three laws? Why are they important?

ADVANCED QUESTIONS

The answers to all computational problems, which are
preceded by an asterisk (*), appear at the end of the book.

Is it possible for an object in the solar system to have a
synodic period of exactly one year? Explain your answer.

Explain qualitatively (in words) the systematic
decrease in the synodic periods of the planets from Mars
outward, as shown in Table 2-1.

A line joining the sun and an asteroid was found to
sweep out 5.2 square astronomical units of space in 1994.
How much area was swept out in 19957 in five years?

A comet moves in a highly elongated orbit about the
Sun with a period of 1000 years. What is the length of the
semimajor axis of the comet’s orbit? What is the farthest
the comet can get from the Sun?

DISCUSSION QUESTIONS

Which planet would you expect to exhibit the greatest
variation in apparent brightness as seen from earth?
Explain your answer.

laws and his universal law of gravitation can be used to
deduce Kepler’s laws and to describe planetary motions
with extreme accuracy.

= The mass of an object is a measure of the amount of
matter in the object; its weight is a measure of the force
with which the gravity of some other object pulls on the
object’s mass.

= In general, the path of one astronomical object about
another, such as that of a comet about the Sun, is an
ellipse, a parabola, or a hyperbola.

In what ways did the astronomical observations of
Galileo support a heliocentric cosmology?

How did Newton’s approach to understanding
planetary motions differ from that of his predecessors?

What is the difference between mass and weight?

Why was the discovery of Neptune a major
confirmation of Newton’s universal law of gravitation?

Why does an astronaut have to exert a force on a
weightless object to move it?

The orbit of a spacecraft about the Sun has a
perihelion distance of 0.5 AU and an aphelion distance of
3.5 AU. What is the spacecraft’s orbital period?

Look up orbital data for the largest moons of Jupiter
on the Internet, in the current issue of a reference from the
U.S. Naval Observatory, such as the Astronomical
Almanac or Astronomical Phenomena, or in such
magazines as Sky & Telescope and Astronomy.
Demonstrate that these orbits obey Kepler’s third law.

Make diagrams of Jupiter’s phases as seen from Earth
and as seen from Saturn.

In what direction (left or right, eastward or westward)
across the celestial sphere do the planets normally appear
to move as seen from Australia? In what direction is
retrograde motion as seen from there?

Use two thumbtacks (or pieces of tape), a loop of string,
and a pencil to draw several ellipses. Describe how the
shapes of the ellipses vary as you change the distance
between the thumbtacks.



62 Chapter 2 Gravitation and the Waltz of the Planets

WHAT IF ...

*21 The Earth were 2 AU from the Sun? What would
the length of the year be? Assuming such physical
properties as rotation rate were as they are today, what
else would be different here? What if the Earth was Y2 AU
from the Sun?

*22 The Earth was moved to a distance of 10 AU from
the Sun? How much stronger or weaker would the Sun’s
gravitational pull be on Earth?

*23 The Earth had twice its present mass? Assume that all
other properties of the Earth and its orbit remain the same.

WEB/CD-ROM QUESTIONS

25 Search the Web for information about Galileo. What
were his contributions to physics? Which of Galileo’s new
ideas were later used by Newton to construct his laws of
motion? What incorrect beliefs about astronomy did
Galileo hold?

26 Search the Web for information about Kepler. Before
he realized that the planets move on elliptical paths, what
other models of planetary motion did he consider? What
was Kepler’s idea of the “music of the spheres”?

27 Search the Web for information about Newton. What
were some of the contributions that he made to physics

OBSERVING PROJECTS

it 29 Itis quite probable that within a few weeks
5@’4 of your reading this chapter one of the planets

will be in opposition or at greatest eastern
elongation, making it readily visible in the evening sky.
Using the Starry Night Backyard™ computer program, the
Internet, or consulting a reference book, such as the
current issue of the Astronomical Almanac or the
pamphlet Astronomical Phenomena (both published by
the U.S. government), select a planet that is at or near
such a configuration. To use Starry Night Backyard™, set
the time for this evening, right click on the screen and
make sure “show planets™ is checked. Press the Labels
button at the top and make sure “planets/Sun” is checked.
Then grab the screen with the mouse and search the sky
for planets. If none are up, change the date by, say, three
days and search again. Repeat until you have found
visible planets up at night. Plan to make your
observations at that time. At opposition, would you
predict that planets move rapidly or slowly from night to
night against the background stars? Verify your

What would be the acceleration of the New Earth due to
the Sun compared to the present acceleration of the Earth
from the Sun? Hint: Try combining F = m,a and the force
equation in An Astronomer’s Toolbox 2-2, where m, is the
mass of the Earth in both equations. Since the acceleration
determines the period of the planet’s orbit, how would the
year on the more massive Earth compare to a year today?

24 The Sun suddenly disappeared? What would the
Earth’s path in space be in response to such an event?
Describe how the Earth would change as a result and how
humans might survive on a sunless planet.

other than developing his laws of motion? What
contributions did he make to mathematics?

SR 28 Monitoring the Retrograde Motion of Mars
z . Access and view the animation “The Path of
Mars in 2004-2005” in Chapter 2 of the
Discovering the Universe Web site or CD-ROM.
(a) Through which two constellations does Mars move?
(b) On approximately what date does Mars stop its direct
(west to east) motion and begin its retrograde motion?
Hint: Use the “Stop” and “Start” functions on your
animation controls. (c) Over how many days does Mars
move in the retrograde direction?

predictions by observing the planet once a week for a
month, recording your observations on a star chart. How
can you determine whether the change in position that
you observe represents rapid or slow motion across the
celestial sphere?

30 If Jupiter is visible in the evening sky, observe it with
a small telescope on five consecutive clear nights. Record
the position of the four Galilean satellites by making nightly
drawings, just as the Jesuit priests did in 1620 (see Figure
2-10). From your drawings, can you tell which moon orbits
closest to Jupiter and which orbits farthest? Are there nights
when you saw fewer than four of the Galilean moons?
What happened to the other moons on those nights?
<&t 31 Use the Starry Night Backyard™ software to
5 = observe the moons of Jupiter. Set for Atlas mode
(Go:Atlas). Center and lock on Jupiter
(Edit:Find:Jupiter) and set the angular size of the sky you
are examining to 30’ using the size button on the upper
right of your screen. Lock on Jupiter (right click on Jupiter,
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click on Centre/Lock). (a) Note the positions of the moons.
Step forward in increments of six hours and draw the
positions of the moons at each timestep. (b) From your
drawings, can you tell which moon orbits closest to Jupiter
and which orbits farthest away? Explain your reasoning.
(c) Determine the periods of orbits of these moons. (d) Are
there timesteps when you see fewer than four Galilean
moons? What happened to the other moons at those times?

If Venus is visible in the evening sky, observe the
planet with a small telescope once a week for a month.
On each night, make a drawing of the phase that you see.
Can you determine from your drawings if the planet is
nearer or farther from the Earth than the Sun is? Do your
drawings show any changes in the phase from one week
to the next? If so, can you deduce if Venus is coming
toward us or moving away from us?

RARS Use your Starry Night Backyard™ software to

5 @3 observe the phases of Venus. Set for Atlas mode
(Go:Atlas). Center and lock on Venus (Edit:Find:

Venus). Set the angular size of the sky to 7'. (a) Draw the
current shape (phase) of Venus. Adjust the timestep to
30 days, make a single timestep, and again draw Venus, to
scale. Make a total of 20 timesteps and drawings. (b) From
your drawings, determine when the planet is nearer or
farther from the Earth than the Sun is. (c) Deduce from your
drawings when Venus is coming toward us or is moving
away from us. (d) Explain why Venus goes through this
particular cycle of phases.

Perform observing project 32 using Mars instead of
Venus. If you have done project 32, compare your results
for the two planets. Why are the cycles of phases as seen
from Earth different for the two planets?



